Evaluation of Arctic sea ice thickness simulated by Arctic Ocean Model Intercomparison Project models

Six AOMIP model simulations are compared with estimates of sea ice thickness derived from pan-arctic satellite freeboard measurements (2004-2008), airborne electromagnetic measurements (2001-2009), ice-draft data from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea (1992- 2...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Johnson, Mark Andrew, Proshutinsky, Andrey Y., Aksenov, Yevgeny, Nguyen, An T., Lindsay, Ron, Haas, Christian, Zhang, Jinlun, Diansky, Nikolay, Kwok, Ron, Maslowski, Wieslaw, Hakkinen, Sirpa, Ashik, Igor, de Cuevas, Beverly
Format: Article in Journal/Newspaper
Language:unknown
Published: 2012
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/308855/
Description
Summary:Six AOMIP model simulations are compared with estimates of sea ice thickness derived from pan-arctic satellite freeboard measurements (2004-2008), airborne electromagnetic measurements (2001-2009), ice-draft data from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea (1992- 2008) and from submarines (1975-2000), drill hole data from the Arctic basin, Laptev and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than ~2 m and underestimate the thickness of ice measured thicker than about ~2 m. In the regions of flat immobile land-fast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than four times and more than one standard deviation, respectively. The models do not reproduce conditions of fast-ice formation and growth. Instead, the modeled fast-ice is replaced with pack ice which drifts, generates ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the ECCO2 and UW models.