An extreme wind event at Casey Station, Antarctica

Model output, satellite data, and in situ observations are used to investigate the conditions that gave rise to an extreme wind event at the Australian Casey Station (66.27°S, 110.53°E) on the coast of East Antarctica. The event took place over the period March 20–22, 1992, and resulted in Casey Sta...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Turner, John, Lachlan-Cope, Tom A., Marshall, Gareth J., Pendlebury, Stephen, Adams, Neil
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2001
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/20315/
https://doi.org/10.1029/2000JD900544
Description
Summary:Model output, satellite data, and in situ observations are used to investigate the conditions that gave rise to an extreme wind event at the Australian Casey Station (66.27°S, 110.53°E) on the coast of East Antarctica. The event took place over the period March 20–22, 1992, and resulted in Casey Station's highest ever wind gust for March (66.9 m s−1, 130 knots) and 10 m mean winds of near 50 m s−1. The event occurred when a deep low was located just north of the coast and there was high surface pressure inland. The rapid deepening of the low took place within a strong baroclinic zone lying north-south between a cold trough and a ridge bringing very warm air southward. A conceptual model is proposed for the very strong winds experienced at Casey Station. Key elements of the model are (1) a synoptic-scale high-low pressure couplet, providing a strengthening pressure gradient; (2) entrainment of radiatively cooled air by the supercritical synoptic gradient, leading to downslope flow; (3) the acceleration of the wind down the lee slope of Law Dome, occurring primarily in response to a topographically induced, long-period, vertically propagating gravity wave; and (4) sources of negative buoyancy, including prestorm radiatively cooled air and, later in the storm, maritime air cooled by heat flux to the ice surface. The topographically induced gravity wave increases the horizontal temperature difference, thus increasing the negative buoyancy of the surface airflow.