Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century

The climate of the Western Antarctic Peninsula (WAP) is the most rapidly changing in the Southern Hemisphere, with a rise in atmospheric temperature of nearly 3°C since 1951 and associated cryospheric impacts. We demonstrate here, for the first time, that the adjacent ocean showed profound coinciden...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Meredith, Michael P., King, John C.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2005
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/1887/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005GL024042
https://doi.org/10.1029/2005GL024042
Description
Summary:The climate of the Western Antarctic Peninsula (WAP) is the most rapidly changing in the Southern Hemisphere, with a rise in atmospheric temperature of nearly 3°C since 1951 and associated cryospheric impacts. We demonstrate here, for the first time, that the adjacent ocean showed profound coincident changes, with surface summer temperatures rising more than 1°C and a strong upper-layer salinification. Initially driven by atmospheric warming and reduced rates of sea ice production, these changes constitute positive feedbacks that will contribute significantly to the continued climate change. Marine species in this region have extreme sensitivities to their environment, with population and species removal predicted in response to very small increases in ocean temperature. The WAP region is an important breeding and nursery ground for Antarctic krill, a key species in the Southern Ocean foodweb with a known dependence on the physical environment. The changes observed thus have significant ecological implications.