On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models

The Coupled Model Intercomparison Project phase 3 (Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Cir...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Wang, Z., Kuhlbrodt, T., Meredith, M.P.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2011
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/15179/
https://nora.nerc.ac.uk/id/eprint/15179/1/jgrc11950.pdf
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JC006757
Description
Summary:The Coupled Model Intercomparison Project phase 3 (Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Circumpolar Currents (ACC) show great diversity in these models, with many even showing reductions in transport. To obtain some understanding of diverse responses in the ACC transport, we investigate both external atmospheric and internal oceanic processes that control the ACC transport responses in these models. While the strengthened westerlies act to increase the tilt of isopycnal surfaces and hence the ACC transport through Ekman pumping effects, the associated changes in buoyancy forcing generally tend to reduce the surface meridional density gradient. The steepening of isopycnal surfaces induced by increased wind forcing leads to enhanced (parameterized) eddy-induced transports that act to reduce the isopycnal slopes. There is also considerable narrowing of the ACC that tends to reduce the ACC transport, caused mainly by the poleward shifts of the subtropical gyres and to a lesser extent by the equatorward expansions of the subpolar gyres in some models. If the combined effect of these retarding processes is larger than that of enhanced Ekman pumping, the ACC transport will be reduced. In addition, the effect of Ekman pumping on the ACC is reduced in weakly stratified models. These findings give insight into the reliability of IPCC-class model predictions of the Southern Ocean circulation and into the observed decadal scale steady ACC transport.