Contourite sedimentation in the Falkland Trough, western South Atlantic

The Falkland Trough is a west-east bathymetric deep that separates the Falkland Plateau from the North Scotia Ridge in the western South Atlantic. It lies in the path of Circumpolar Deep Water flowing within the Antarctic Circumpolar Current (ACC), and Weddell Sea Deep Water flowing beneath the ACC...

Full description

Bibliographic Details
Main Authors: Cunningham, Alex P., Howe, John A., Barker, Peter F.
Other Authors: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugères, J.-C., Viana, A.R.
Format: Book Part
Language:unknown
Published: Geological Society of London 2002
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/13258/
Description
Summary:The Falkland Trough is a west-east bathymetric deep that separates the Falkland Plateau from the North Scotia Ridge in the western South Atlantic. It lies in the path of Circumpolar Deep Water flowing within the Antarctic Circumpolar Current (ACC), and Weddell Sea Deep Water flowing beneath the ACC east of Shag Rocks passage. Marine geophysical and sediment core data demonstrate the influence of ambient bottom currents on deposition in this area, and reveal two styles of contourite sedimentation: (1) deposition of glauconite-rich sandy contourites in exposed areas of the Falkland Plateau and Falkland Trough, where vigorous ACC bottom currents control sedimentation, and (2) deposition of biogenic sandy contourites, muddy contourites and hemipelagites (western Falkland Trough), and muddy diatom ooze (eastern Falkland Trough), in the form of two elongate sediment drifts, which have developed in the presence of more sluggish bottom currents. The drift sediments contain a depositional record of bottom current flow through the glacial cycle (southern-origin bottom water flow in the east, and probably ACC flow in the west); analyses of core data from the western Falkland Trough suggest a reduction in bottom current strength during the Last Glacial Maximum at present depths of > 2500 m below sea level.