An analysis of cloud observations from Vernadsky, Antarctica

This paper presents results of a combined analysis of cloud observations made at the Antarctic base Faraday/Vernadsky between 1960 and 2005 and sea ice concentration from the HadISST1 data set. The annual total cloud cover has increased significantly during this period with the strongest and most si...

Full description

Bibliographic Details
Published in:International Journal of Climatology
Main Author: Kirchgäßner, Amélie
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley 2010
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/10829/
http://onlinelibrary.wiley.com/doi/10.1002/joc.1998/pdf
Description
Summary:This paper presents results of a combined analysis of cloud observations made at the Antarctic base Faraday/Vernadsky between 1960 and 2005 and sea ice concentration from the HadISST1 data set. The annual total cloud cover has increased significantly during this period with the strongest and most significant positive trend found in winter, and positive tendencies observable in all seasons. This trend is associated with a decrease in sea ice concentration in the area of the Western Antarctic Peninsula. Though the observed sea ice reduction is actually larger and more significant in summer and autumn, there is actually a significant relation between total cloud cover and sea ice concentration only in winter. The increase in the total cloud cover is neither reflected in the low cloud amount nor in the number of records for low, medium or high level clouds. It is therefore thought that the increase in the total cloud cover is caused by an increase in the amount of medium and/or high level clouds. Instead, records for the low cloud amount show a redistribution from cases of extreme cloud cover (0, 1, 7 and 8 okta), which account for up to 90% of annual records, to cases of moderate cloud cover. In accordance with the decrease in sea ice, this may indicate a shift from low-level stratiform towards convective clouds. Copyright (C) 2009 Royal Meteorological Society