超臨界二氧化碳與界面活性劑包覆脂解酶提高鮪魚油中多元不飽和脂肪酸之研究

The subject of this study is to investigate an efficient method for concentrating of n-3 polyunsaturated fatty acid (PUFA) from tuna oil (include recovering from tuna cooking juice and commercial tuna oil) by supercritical carbon dioxide extraction and surfactant-coated lipase hydrolysis. Hopefully...

Full description

Bibliographic Details
Main Authors: 謝昌衛, Hsieh, Chang-Wei
Other Authors: 柯文慶, Chiehming J, 張傑明
Format: Other/Unknown Material
Language:English
Published: 食品科學系 2005
Subjects:
Online Access:http://hdl.handle.net/11455/51495
Description
Summary:The subject of this study is to investigate an efficient method for concentrating of n-3 polyunsaturated fatty acid (PUFA) from tuna oil (include recovering from tuna cooking juice and commercial tuna oil) by supercritical carbon dioxide extraction and surfactant-coated lipase hydrolysis. Hopefully it can offer the functional oil which accords with market demand Cooking is a necessary part of canned tuna processing. It is wasteful to discard the incidental cooking juice, which contains soluble proteins and lipid. The objective of this study was to recover and refine fish oil contained in cooking juice. Acid value (AV), saponification value (SV), and peroxide value (POV) of the crude oil prepared from cooking juice were 10.5 mg KOH/g oil, 170.2 mg KOH/g oil, and 18.4 meq/kg oil, respectively. Values of the three indices decreased to 0.25 mg KOH/g oil, 167.3 mg KOH/g oil, and 12.5 meq/kg oil, respectively, via refining by steps of degumming, deacidification, and decoloring. The quality of crude oil was clearly improved after refining. The crude oil contained 9.23% DHA (decosahexaneoic acid) and 3.27% EPA (eicosapentaenoic acid). Both highly unsaturated fatty acids were only slightly damaged during refining. The fish oil contained 12.98% EPA and DHA after ethyl esterification and increased to 37.4% with subsequent urea adduct fractionation. Supercritical carbon dioxide extraction was further used to increase the concentration of EPA and DHA ethyl esters. The ratio of EPA + DHA ethyl esters (high-molecular-weight components) to that of C16 and C18:1 fatty acid ethyl esters (low-molecular-weight components) was used as a separation index for evaluating the process variables. Experimental results indicated that a high CO2 density caused a low separation factor. At 1,500 psig and 328.2 K, the extraction collected over 600 L CO2, displaying an accepted concentration factor of EPA+DHA ethyl esters herein. About 80% yield of EPA and DHA was obtained and the ethyl esters increased from 37.4% to 54.3%. A surfactant-coated lipase has been known to be soluble in organic solvents and acted as an efficient esterification catalyst in the dry organic solvent. In our study it was also found to acted as an efficient hydrolytic catalyst for tuna oil in the two-phase aqueous-organic system. Michaelis-Menten kinetics in the two-phase reactions was also studied. Km value of the surfactant-coated Candida rugosa lipase was a half the native lipase while the maximum velocity (Vmax) was 11.5 times higher. In another part of enrichment n-3 polyunsaturated fatty acid (n-3 PUFA), the results showed that the content of n-3 PUFA in glyceride mixtures grew from 26.4% to 49.8% after hydrolysis and the content of DHA increased from 19.1% to 38.9%. Ascorbyl FA esters, oil-soluble antioxidants, were widely used in food industry, medical hygiene, and cosmetics. They would be hydrolyzed to Vit C and fatty acid in human body. Vit C-DHA ester was synthesized through immobilized-lipase-catalyzed condensation of ascorbic acid and DHA. The ability for lipase from C. Antarctica (Novozyme 435) to catalyze the direct esterification of Vit C with DHA were investigated in this study. Response surface methodology (RSM) and four-factor-three-level central composite rotatable design (CCRD) were adopted to evaluated the effects of synthesis variables, such as reaction time (12 — 36 hr), substrate molar ratio (ascorbic acid : DHA = 1:3 — 1:7), enzyme amount (25 mg — 75 mg), and molecular sieve amount (200 — 600 mg), on percentage molar conversion of Vit C-DHA ester. The experiment's result showed that it used 2-methyl-2-butanol as solvent in 55℃, with 50 mg lipase, substrate ratio 1:7, and 400 mg molecular sieve after 12 hour reaction the conversion of ester synthesis amounts to 85.7%. 本研究係以鮪魚油(包含從蒸煮液回收與市售產品)為原料,以超臨界二氧化碳萃取法與界面活性劑包覆之脂解酶水解方式,探討提高油脂中多元不飽和脂肪酸含量之效果,期能提供符合市場需求之機能性油脂。 蒸煮為鮪魚罐頭加工中之必要工程,副生之煮汁中含有水溶性蛋白質及脂質,研究中將煮汁離心,回收所得粗製魚油之酸價為 10.5 mg KOH/g oil,皂化價為 170.2 mg KOH/g oil,過氧化價為 18.4 meq/kg oil。粗製魚油經脫膠、脫酸、脫色等精製過程後,此三項品質指標值依序為 0.25 mg KOH/g oil、167.3 mg KOH/g oil、12.5 meq/kg oil,顯示出品質之提升效果。此外回收的粗製魚油中 DHA (decosahexaneoic acid) 含量達 9.23%,EPA (eicosapentaenoic acid) 則為 3.27%,此二種機能性成分均會因精製而有些微的損失,此應係精製過程中之加熱所致。 其中魚油部份含有 12.98% EPA 和 DHA,而經由乙基酯化與尿素區分濃縮後上升至 37.4%,希望能藉由超臨界二氧化碳萃取技術來更進一步提升魚油中多元不飽和脂肪酸的含量,並藉由定義分離效率 S 值為樣品中 C16 + C18 (較低分子量脂肪酸乙酯濃度) 和 EPA+DHA (較高分子量脂肪酸乙酯濃度) 的比值,來評估利用超臨界二氧化碳萃取技術濃縮多元不飽和脂肪酸的效率。實驗結果顯示較高的二氧化碳濃度會導致較低的萃取效果,以 1500 psig 和 328.2 K 的萃取條件下,在 CO2 超過 600 L 後收集,顯示出較佳的 EPA+DHA 脂肪酸乙酯的濃縮比例,其中 EPA 和 DHA 的回收比率接近 80%,而濃度也從 37.4% 增加到 54.3%。 界面活性劑包覆之脂解酶 (surfactant-coated lipase;SCL) 被認為是一種可溶於有機溶劑之酵素,且其於無水的有機環境下具有良好之酯化功能,研究中發現,界面活性劑包覆之脂解酶於有機溶劑-水溶液兩相系統中仍保有水解鮪魚油之效果,且界面活性劑包覆的脂解酶之 Michaelis-Menten 動力學中 Km 值為未經包覆脂解酶的 1/2 倍,Vmax 則為其 11.5 倍。針對脂解酶濃縮多元不飽和脂肪酸之功能而言,利用經界面活性劑包覆的脂解酶水解鮪魚油,可使多元不飽和脂肪酸之含量由 26.4% 增加至 49.8%,DHA 含量由 19.1% 提升至 38.9%。 抗壞血酸脂肪酸酯為脂溶性之抗氧化劑,在人體可水解為抗壞血酸及脂肪酸,故其不僅保留了抗壞血酸之特性,更因與脂肪酸結合而增加抗壞血酸於油相之溶解度,使其可廣泛地應用於食品、醫療衛生及化妝品等領域。Vit C-DHA 酯的合成是利用固定化酵素對於抗壞血酸及 DHA 進行催化所得之產物,實驗利用脂解酶 Novozyme 435 催化抗壞血酸與 DHA 之間的直接酯化反應,並套用反應曲面法 (response surface methodology; RSM) 及四因子三階層變數之中心混成實驗設計法,分別探討反應時間 (12 — 36 hr)、基質莫耳數比 (1:3 — 1:7)、酵素添加量 (25 mg — 75 mg) 及分子篩添加量 (200 — 600 mg) 等反應變數對合成 Vit C-DHA 酯之影響。研究結果顯示,於 55℃、 2-methyl-2- butanol 溶劑中,添加脂解酶 50 mg、分子篩 400 mg、基質莫耳比 1:7,反應 12 小時,具有最佳之轉換率 85.7%。 目次 中文摘要 --- Ⅰ 英文摘要 --- Ⅳ 第一章 緒論 --- 1-1 壹、研究背景 --- 1-1 ㄧ、多元不飽和脂肪酸 (PUFA) 研究發展 --- 1-1 二、多元不飽和脂肪酸 (PUFA) 在人體內的生物合成 --- 1-2 三、多元不飽和脂肪酸的來源 --- 1-3 四、多元不飽和脂肪酸的生理活性 --- 1-3 五、EPA 及 DHA 不飽和脂肪酸的生理機能 --- 1-4 1. DHA (docosahexaenoic acid) 的生理功用 --- 1-4 2. EPA (eicosapentaenoic acid) 的生理功用 --- 1-5 六、PUFA 的濃縮方法 --- 1-6 1. 尿素包埋法 --- 1-7 2. 超臨界流體萃取法 --- 1-8 3. 逆相高效能液相層析法 --- 1-8 4. 硝酸銀濃縮法 --- 1-9 5. 酵素法 --- 1-9 6. 脂肪酸鹽區分法 --- 1-10 7. 低溫溶劑結晶法 --- 1-11 貳、研究目的 --- 1-12 參、參考文獻 --- 1-14 第二章 魚油回收與精製 --- 2-1 壹、中文摘要 --- 2-1 貳、英文摘要 --- 2-2 參、文獻整理 --- 2-3 一、鮪魚之種類 --- 2-3 1. 長鰭鮪 --- 2-4 2. 黃鰭鮪 --- 2-5 3. 大目鮪 --- 2-5 4. 黑鮪 --- 2-6 5. 小黃鰭鮪 --- 2-6 二、罐頭食品 --- 2-7 三、鮪魚罐頭的製法 --- 2-7 四、副產使用 --- 2-8 肆、研究目的 --- 2-11 伍、材料與方法 --- 2-12 一、材料 --- 2-12 二、方法 --- 2-12 1. 油脂之萃取 --- 2-12 2. 原油之精製 --- 2-12 3. 一般理化特性 --- 2-13 4. 脂肪酸組成測定 --- 2-16 5. 膽固醇測定 --- 2-17 6. 氧化安定性測試 --- 2-18 7. 統計分析 --- 2-19 陸、結果與討論 --- 2-20 一、魚油的一般理化性質及精製過程之回收率 --- 2-20 二、脂肪酸之組成 --- 2-24 三、膽固醇含量分析 --- 2-27 四、貯藏安定性試驗 --- 2-29 柒、結論 --- 2-31 捌、參考文獻 --- 2-32 第三章 利用超臨界二氧化碳回收鮪魚蒸煮液中多元不飽和脂肪酸 --- 3-1 壹、中文摘要 --- 3-1 貳、英文摘要 --- 3-2 參、文獻整理 --- 3-3 一、超臨界流體之發展 --- 3-3 二、超臨界流體的性質 --- 3-8 三、超臨界二氧化碳萃取 --- 3-11 四、以超臨界二氧化碳萃取法區分脂肪酸酯類 --- 3-16 1. 直接以超臨界二氧化碳萃取法萃取 --- 3-16 2. 超臨界二氧化碳與尿素包埋結合法分離魚油 --- 3-17 3. 超臨界二氧化碳萃取法與銀離子相結合分離魚油 --- 3-18 4. 在填料塔中的超臨界二氧化碳萃取法 --- 3-19 肆、研究目的 --- 3-20 伍、材料與方法 --- 3-21 一、材料與儀器 --- 3-21 二、方法 --- 3-22 1. 乙基酯化 --- 3-22 2. 尿素濃縮區分法 --- 3-22 3. 超臨界二氧化碳萃取流程 --- 3-23 4. 脂肪酸的測定方式 --- 3-24 5. 統計分析 --- 3-24 陸、結果與討論 --- 3-27 ㄧ、使用尿素包埋分化濃縮 n-3 多元不飽和脂肪酸 --- 3-27 二、利用 K value 評估超臨界二氧化碳萃取效率 --- 3-30 三、以濃縮比率 (β value) 評估超臨界二氧化碳萃取法濃縮鮪魚脂肪酸乙酯之效果 (萃取條件為 1500 psig 和 328.2 K) --- 3-33 四、利用組合尿素包埋分化與超臨界二氧化碳萃取濃縮 n-3 多元不飽和脂肪酸 --- 3-35 柒、結論 --- 3-37 捌、參考文獻 --- 3-38 第四章 利用界面活性劑包覆脂解酶提高鮪魚油中多元不飽和脂肪酸 --- 4-1 壹、中文摘要 --- 4-1 貳、英文摘要 --- 4-2 參、文獻整理 --- 4-3 一、多元不飽和脂肪酸的重要性 --- 4-3 二、從魚油中濃縮三酸甘油酯型態之多元不飽和脂肪酸 --- 4-3 1. 低溫溶劑區分法 --- 4-4 2. 超臨界二氧化碳萃取法 --- 4-5 3. 酵素法 --- 4-4 三、利用酵素方法濃縮多元不飽和脂肪酸之優點 --- 4-6 四、於有機溶劑中保持脂解酶催化活性之策略 --- 4-10 五、界面活性劑包覆脂解酶 (SCL) 法 --- 4-11 肆、研究目的 --- 4-15 伍、材料與方法 --- 4-17 ㄧ、實驗架構 --- 4.17 二、實驗材料 --- 4-17 三、實驗方法 --- 4-17 1. 界面活性劑包覆脂解酶之製備 --- 4-17 2. 界面活性劑包覆脂解酶之蛋白質含量 --- 4-18 3. 未被包覆之脂解酶含量測定 --- 4-19 4. 魚油水解反應 --- 4-19 5. 水解反應轉化率之測定 --- 4-20 6. 水解後魚油之脂肪酸組成分析 --- 4-21 7. 統計分析 --- 4-21 陸、結果與討論 --- 4-24 一、界面活性劑包覆脂解酶之特性 --- 4-24 二、SCL-Cr 於兩相系統中鲔魚油水解反應之催化 --- 4-26 三、水解反應之酵素動力學 --- 4-28 四、多元不飽和脂肪酸 (n-3 PUFAs) 之濃縮 --- 4-32 柒、結論 --- 4-36 捌、參考文獻 --- 4-38 第五章 反應曲面法研究酵素合成 Vit C-DHA 酯之最適化條件 --- 5-1 壹、中文摘要 --- 5-1 貳、英文摘要 --- 5-2 參、文獻整理 --- 5-3 一、油脂生物技術簡介 --- 5-3 二、酵素催化反應之優點 --- 5-3 三、酵素於有機溶劑中之催化作用 --- 5-4 四、酵素於酯類合成上之重要性 --- 5-7 五、脂解酶對基質之特異性 --- 5-7 1. 對基質具專一性 (substrate specific) --- 5-8 2. 對區域位置具專一性 (regiospecific) --- 5-8 3. 非專一性 (nonspecific) --- 5-8 4. 對脂肪的醯基具專一性 (fattyacyl specific) --- 5-8 5. 對立體位置具專一性 (stereospecific) --- 5-10 六、抗壞血酸酯之簡介 --- 5-10 七、抗壞血酸酯合成之發展近況 --- 5-11 八、反應曲面法之簡介 --- 5-13 1. Plackett-Burman 設計 --- 5-14 2. 二水準因子設計 --- 5-14 3. 部份因子設計法 --- 5-15 4. Box-Bohnken 設計 --- 5-15 九、應用反應曲面法之優點 --- 5-16 1. 試驗點數減少 --- 5-16 2. 多因子試驗的可行性 --- 5-16 3. 尋求因子間相互關係及最適條件 --- 5-16 十、執行反應曲面法之步驟 --- 5-21 十一、反應曲面法之限制 --- 5-24 十二、反應曲面法應用於酯類之合成 --- 5-24 肆、研究動機 --- 5-26 伍、材料與方法 --- 5-27 一、藥品 --- 5-27 二、器材 --- 5-28 三、實驗設計 --- 5-28 四、酯化方法 --- 5-28 五、TLC 檢測試驗 --- 5-29 六、分析與純化 --- 5-29 七、產物之鑑定 --- 5-30 八、統計分析 --- 5-32 陸、結果與討論 --- 5-33 一、不同脂解酶對合成 Vit C-DHA 酯之影響 --- 5-33 二、Vit C-DHA 酯之鑑定 --- 5-34 三、利用反應曲面法探討 Vit C-DHA 酯合成之最適化條件 --- 5-44 四、溫度對莫耳轉換率之影響 --- 5-49 五、分子篩添加量對莫耳轉換率之影響 --- 5-49 六、酵素添加量對莫耳轉換率的影響 --- 5-50 七、基質比對莫耳轉換率之影響 --- 5-51 柒、結論 --- 5-52 捌、參考文獻 --- 5-53 第六章 結語 --- 6-1