聚碳酸酯/蒙脫土奈米複合材料之製備與物性分析

This thesis comprises two methods to modify montmorillonite for the preparation of polycarbonate & clay nanocomposites. We first utilize epoxy and ammonia base to react, add acid to prepare cationic surfactant, and mix with montmorillonite to carry cation exchange for organic montmorillonite . S...

Full description

Bibliographic Details
Main Authors: 林耿任, Jen, Lin Ken
Other Authors: 吳震裕
Format: Other/Unknown Material
Language:English
Published: 化學工程學系 2005
Subjects:
Online Access:http://hdl.handle.net/11455/3356
Description
Summary:This thesis comprises two methods to modify montmorillonite for the preparation of polycarbonate & clay nanocomposites. We first utilize epoxy and ammonia base to react, add acid to prepare cationic surfactant, and mix with montmorillonite to carry cation exchange for organic montmorillonite . Second, we employ modified polyethylene and clay to form nanocomposite. The modified polyethylene can be absorbed on clay surface, and the absorbing amount of clay gets up to 0.41 ~ 0.89 g / g-clay. By XRD analysis, we find that there is no appearance of the diffraction peak, which demonstrates good dispersing property. From FTIR, we find that absorbance will disappear in 1254 and 912 cm-1 after the epoxy and ammonium base react and turn on the ring; however, carbonyl ( 1775 cm-1 ) , the absorbing peak of carbonic acid of ester flexible show that the peak is shifted while modified polyethylene is added. It also shows the polycarbonate and modified polyethylene were bonded. From TGA data, the temperature of modified polyethylene/polycarbonate drop to 104 0C with 5 wt % lost; modified polyethylene / polycarbonate nanocomposite loss temperature drop 72 0C on 5 wt %. WAXD study also reveals that the clay gallery is greater than 4.4 nm for modified polyethylene/ polycarbonate nanocomposite. Form DSC analysis, adding polycarbonate on montmorillonite makes the temperature of Tg drop of 16 0C. Scanning electron microscope are used to observe the fracture surface of blends at low temperatures. It is found that the surface of intrinsic brittleness transform the intrinsic toughness. Dynamic mechanical data shows the addition of 5wt% silica enhance the storage modulus ( E' ) of nanocomposite with an increase of 10.2 ~ 39 % at 30 0C;For loss modulus ( E'' ) at Tg, the peak temperature will be shifted when the addition modified polyethylene. 本研究使用兩種方法改質蒙脫土製備聚碳酸酯與黏土之奈米高分子複材,第一種是利用環氧基與胺基反應並經酸化後製備成陽離子型界面活性劑,再與蒙脫土進行離子交換形成有機化蒙脫土;第二種則是由改質聚乙烯與黏土混煉而形成奈米複合材料,發現此改質聚乙烯改質劑可吸附於黏土表面,黏土吸附量可達0.41 ~ 0.89 g / g-clay,由XRD分析可發現無繞射峰出現,顯示具有良好分散性。由FTIR分析鑑定,在1254及912 cm-1發現環氧基與胺基反應開環後吸收峰會消失;而在聚碳酸酯之羰基 ( 1775 cm-1 ) 伸縮吸收峰可發現隨著改質聚乙烯添加後吸收峰會往下移動,顯示聚碳酸酯與改質聚乙烯有鍵結的產生。由TGA結果發現添加改質蒙脫土於聚碳酸酯中,在5 wt % 損失溫度下降104 0C;而改質聚乙烯 / 聚碳酸酯複材於5 wt % 損失溫度下降72 0C。在XRD分析上可發現其層間距大於4.4 nm。DSC研究發現,添加改質無機物於聚碳酸酯中其Tg會下降16 0C。由SEM之低溫斷裂面形態分析發現聚碳酸酯在添加改質聚乙烯後其斷裂面會由脆性的本質轉變為較韌性的結構。動態機械性質分析 ( DMA ),添加5 wt % 改質無機物後其30 0C下儲存模數 ( E’ ) 最大分別提升10.2 ~ 39 %;而30 0C下損失模數 ( E’’ ) 時會隨著無機物含量增加而增加,α鬆弛強度會隨著改質聚乙烯添加量增加而往右偏移,顯示改質聚乙烯與聚碳酸酯彼此間互相有反應的發生。 目 錄 中文摘要 ………………………….…………………………………I 英文摘要 ………………………………………………………….II 目錄 …………………………………………………………….……IV 表目錄 …………………………………………………………….VI 圖目錄 ………………………………………………….………….VII 一、緒論 …………………………………………………………….1 1.1 前言 ……………………………………………………….1 1.2 奈米黏土簡介………………….……………………….2 1.3 高分子 / 黏土奈米複合材料 …………………………….3 1.4 聚碳酸酯簡介 …………………………………………….4 1.5 研究動機與目的 ………………………………………….5 二、文獻回顧與研究方向 ………………………………………….6 2.1 聚碳酸酯 / 環氧樹脂相關文獻回顧 …………………….6 2.2 聚碳酸酯 / 無機物奈米複合材料之相關文獻回顧 …….9 2.3 研究方向 ………………………………………………….13 2.4 研究架構及流程 ………………………………………….14 三、實驗 …………………………………………………………….16 3.1 實驗材料 ………………………………………………….16 3.2 實驗儀器 ………………………………………………….17 3.3 實驗步驟 ………………………………………………….19 四、結果與討論 …………………………………………………….24 4.1 陽離子型界面活性劑之製備與分析……………………….24 4.2蒙脫土吸附改質劑OA及矽氧化物膠體粒子………………25 4.3蒙脫土吸附DA與改質MPE …………….……………….26 4.4溶液法製備聚碳酸酯 / 蒙脫土複材性質分析…………….27 4.4.1熱重損失分析 ( TGA ) ……………………………….28 4.4.2微差掃描式熱分析 ( DSC ) ………………………….29 4.4.3廣角X-ray繞射儀分析 ( WAXD ) ……………………29 4.5熔融混煉法製備聚碳酸酯 / 蒙脫土複材性質分析 ……….30 4.5.1熱重損失分析 ( TGA ) ……………………………….31 4.5.2微差掃描式熱分析 ( DSC ) ……………………….….31 4.5.3廣角X-ray繞射儀分析 ( WAXD ) ……………………32 4.5.4動態機械性質分析 ( DMA ) ……………………….33 4.5.5穿透式電子顯微鏡分析 (TEM) ………………………35 4.5.6斷裂面形態分析 ( SEM ) …………………………….36 五、結論…………………………………………………………………37 六、參考文獻………………………………………………….……….39 附表一、編號表 ……………………………………….………………72