Summary: | Earth system models (ESMs) can help to improve the understanding of climate-induced cryospheric-hydrological impacts in complex mountain regions, such as High Mountain Asia (HMA). Coarse ESM grids, however, have difficulties in representing cryospheric-hydrological processes that vary over short distances in complex mountainous environments. Variable-resolution (VR) ESMs can help to overcome these limitations through targeted grid refinement. This study investigates the ability of the VR Community Earth System Model (VR-CESM) to simulate cryospheric-hydrological variables such as the glacier surface mass balance (SMB) over HMA. To this end, a new VR grid is generated, with a regional grid refinement up to 7 km over HMA. Two coupled atmosphere-land simulations are run for the period 1979-1998. The second simulation is performed with an updated glacier cover dataset and includes snow and glacier model modifications. Comparisons are made to gridded outputs derived from a globally uniform 1 circle CESM grid, observation-, reanalysis-, and satellite-based datasets, and a glacier model forced by a regional climate model (RCM). Climatological biases are generally reduced compared to the coarse-resolution CESM grid, but the glacier SMB is too negative relative to observation-based glaciological and geodetic mass balances, as well as the RCM-forced glacier model output. In the second simulation, the SMB is improved but is still underestimated due to cloud cover and temperature biases, missing model physics, and incomplete land-atmosphere coupling. The outcomes suggest that VR-CESM could be a useful tool to simulate cryospheric-hydrological variables and to study climate change in mountainous environments, but further developments are needed to better simulate the SMB of mountain glaciers. 1852977
|