Zonal mean and shift modes of historical climate response to evolving aerosol distribution

Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth's climate. Major emission sources shifted from the western to eastern hemisphere around the 1980s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced clim...

Full description

Bibliographic Details
Published in:Science Bulletin
Other Authors: Kang, Sarah M. (author), Xie, Shang-Ping (author), Deser, Clara (author), Xiang, Baoqiang (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.1016/j.scib.2021.07.013
Description
Summary:Anthropogenic aerosols are effective radiative forcing agents that perturb the Earth's climate. Major emission sources shifted from the western to eastern hemisphere around the 1980s. An ensemble of single-forcing simulations with an Earth System Model reveals two stages of aerosol-induced climate change in response to the global aerosol increase for 1940-1980 and the zonal shift of aerosol forcing for 1980-2020, respectively. Here, using idealized experiments with hierarchical models, we show that the aerosol increase and shift modes of aerosol-forced climate change are dynamically distinct, governed by the inter-hemispheric energy transport and basin-wide ocean-atmosphere interactions, respectively. The aerosol increase mode dominates in the motionless slab ocean model but is damped by ocean dynamics. Free of zonal-mean energy perturbation, characterized by an anomalous North Atlantic warming and North Pacific cooling, the zonal shift mode is amplified by interactive ocean dynamics through Bjerknes feedback. Both modes contribute to a La Nina-like pattern over the equatorial Pacific. We suggest that a global perspective that accommodates the evolving geographical distribution of aerosol emissions is vital for understanding the aerosol-forced historical climate change. (c) 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved. 1852977