Attribution of the role of climate change in the forest fires in Sweden 2018

In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying the Canadian Fire Weather Index (FWI) based on sub-daily data, both in reanalysis data sets (ERA-Interim...

Full description

Bibliographic Details
Published in:Natural Hazards and Earth System Sciences
Other Authors: Krikken, Folmer (author), Lehner, Flavio (author), Haustein, Karsten (author), Drobyshev, Igor (author), van Oldenborgh, Geert Jan (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.5194/nhess-21-2169-2021
Description
Summary:In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying the Canadian Fire Weather Index (FWI) based on sub-daily data, both in reanalysis data sets (ERA-Interim, ERA5, the Japanese 55 year Reanalysis, JRA-55, and Modern-Era Retrospective analysis for Research and Applications version 2, MERRA-2) and three large-ensemble climate models (EC-Earth, weather@home, W@H, and Community Earth System Model, CESM) simulations. The FWI, based on reanalysis, correlates well with the observed burnt area in summer (r = 0.6 to 0.8). We find that the maximum FWI in July 2018 had return times of similar to 24 years (90% CI, confidence interval, > 10 years) for southern and northern Sweden. Furthermore, we find a negative trend of the FWI for southern Sweden over the 1979 to 2017 time period in the reanalyses, yielding a non-significant reduced probability of such an event. However, the short observational record, large uncertainty between the reanalysis products and large natural variability of the FWI give a large confidence interval around this number that easily includes no change, so we cannot draw robust conclusions from reanalysis data. R16AC00039 ATM0856145