Revisiting the causal connection between the Great Salinity Anomaly of the 1970s and the shutdown of Labrador Sea deep convection

The Great Salinity Anomaly (GSA) of the 1970s is the most pronounced decadal-scale low-salinity event observed in the subpolar North Atlantic (SPNA). Using various simulations with the Community Earth System Model, here we offer an alternative view on some aspects of the GSA. Specifically, we examin...

Full description

Bibliographic Details
Published in:Journal of Climate
Other Authors: Kim, Who M. (author), Yeager, Stephen (author), Danabasoglu, Gokhan (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.1175/JCLI-D-20-0327.1
Description
Summary:The Great Salinity Anomaly (GSA) of the 1970s is the most pronounced decadal-scale low-salinity event observed in the subpolar North Atlantic (SPNA). Using various simulations with the Community Earth System Model, here we offer an alternative view on some aspects of the GSA. Specifically, we examine the relative roles of reduced surface heat flux associated with the negative phase of the North Atlantic Oscillation (NAO) and extreme Fram Strait sea ice export (FSSIE) in the late 1960s as possible drivers of the shutdown of Labrador Sea (LS) deep convection. Through composite analysis of a long control simulation, the individual oceanic impacts of extreme FSSIE and surface heat flux events in the LS are isolated. A dominant role for the surface heat flux events for the suppression of convection and freshening in the interior LS is found, while the FSSIE events play a surprisingly minor role. The interior freshening results from reduced mixing of fresher upper ocean with saltier deep ocean. In addition, we find that the downstream propagation of the freshwater anomaly across the SPNA is potentially induced by the persistent negative NAO forcing in the 1960s through an adjustment of thermohaline circulation, with the extreme FSSIE-induced low-salinity anomaly mostly remaining in the boundary currents in the western SPNA. Our results suggest a prominent driving role of the NAO-related heat flux forcing for key aspects of the observed GSA, including the shutdown of LS convection and transbasin propagation of low-salinity waters. 1852977 NA16OAR4310170