Quantifying and diagnosing sources of uncertainty in midcentury changes in North American snowpack from NARCCAP

The NARCCAP RCM-GCM ensemble is used to explore the uncertainty in midcentury projections of snow over North America that arise when multiple RCMs are used to downscale multiple GCMs. Various snow metrics are examined, including snow water equivalent (SWE), snow cover extent (SCE), snow cover durati...

Full description

Bibliographic Details
Published in:Journal of Hydrometeorology
Other Authors: McCrary, Rachel R. (author), Mearns, Linda O. (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.1175/JHM-D-18-0248.1
Description
Summary:The NARCCAP RCM-GCM ensemble is used to explore the uncertainty in midcentury projections of snow over North America that arise when multiple RCMs are used to downscale multiple GCMs. Various snow metrics are examined, including snow water equivalent (SWE), snow cover extent (SCE), snow cover duration (SCD), and the timing of the snow season. Simulated biases in baseline snow characteristics are found to be sensitive to the choice of RCM and less influenced by the driving GCM. By midcentury, domain-averaged SCE and SWE are projected to decrease in all months of the year. However, using multiple RCMs to downscale multiple GCMs inflates the uncertainty in future projections of both SCE and SWE, with projections of SWE being more uncertain. Spatially, the RCMs show winter SWE decreasing over most of North America, except north of the Arctic rim, where SWE is projected to increase. SCD is also projected to decrease with both a later start and earlier termination of the snow season. For all metrics considered, the magnitude of the climate change signal varies across the RCMs. The ensemble spread is large over the western United States, where the RCMs disagree on the sign of the change in SWE in some high-elevation regions. Future projections of snow (both magnitude and spatial patterns) are more similar between simulations performed with the same RCM than the simulations driven by the same GCM. This implies that climate change uncertainty is not sufficiently explored in experiments performed with a single RCM driven by multiple GCMs.