Spatial patterns and intensity of the surface storm tracks in CMIP5 models

To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks' maxima relative to...

Full description

Bibliographic Details
Published in:Journal of Climate
Other Authors: Booth, James F. (author), Kwon, Young-Oh (author), Ko, Stanley (author), Small, R. Justin (author), Msadek, Rym (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.1175/JCLI-D-16-0228.1
Description
Summary:To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks' maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs' match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence. DE-SC0006743