Characterizing Sierra Nevada snowpack using variable-resolution CESM

The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United...

Full description

Bibliographic Details
Published in:Journal of Applied Meteorology and Climatology
Other Authors: Rhoades, Alan M. (author), Huang, Xingying (author), Ullrich, Paul (author), Zarzycki, Colin (author)
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society 2016
Subjects:
Online Access:http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-022-633
https://doi.org/10.1175/JAMC-D-15-0156.1
Description
Summary:The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling technique--variable-resolution global climate modeling within the Community Earth System Model (VR-CESM)--at horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere-ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the "Daymet," "Cal-Adapt," NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California’s complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of <7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December-February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.