Potential climate impact of black carbon emitted by rockets

A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black ca...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Other Authors: Ross, Martin (author), Mills, Michael (author), Toohey, Darin (author)
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2010
Subjects:
Online Access:http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-001-478
https://doi.org/10.1029/2010GL044548
Description
Summary:A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 10⁵ and would be comparable to the radiative forcing estimated from current subsonic aviation.