Attribution and impacts of upper ocean biases in CCSM3

The largest and potentially most important ocean near-surface biases are examined in the Community Climate System Model coupled simulation of present-day conditions. They are attributed to problems in the component models of the ocean or atmosphere, or both. Tropical biases in sea surface salinity (...

Full description

Bibliographic Details
Other Authors: Large, W. (author), Danabasoglu, Gokhan (author)
Format: Article in Journal/Newspaper
Language:English
Published: 2006
Subjects:
Online Access:http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-019-323
Description
Summary:The largest and potentially most important ocean near-surface biases are examined in the Community Climate System Model coupled simulation of present-day conditions. They are attributed to problems in the component models of the ocean or atmosphere, or both. Tropical biases in sea surface salinity (SSS) are associated with precipitation errors, with the most striking being a band of excess rainfall across the South Pacific at about 8°S. Cooler-than-observed equatorial Pacific sea surface temperature (SST) is necessary to control a potentially catastrophic positive feedback, involving precipitation along the equator. The strength of the wind-driven gyres and interbasin exchange is in reasonable agreement with observations, despite the generally too strong near-surface winds. However, the winds drive far too much transport through Drake Passage [>190 Sv (1 Sv ≡ 10⁶ m³ s⁻¹)], but with little effect on SST and SSS. Problems with the width, separation, and location of western boundary currents and their extensions create large correlated SST and SSS biases in midlatitudes. Ocean model deficiencies are suspected because similar signals are seen in uncoupled ocean solutions, but there is no evidence of serious remote impacts. The seasonal cycles of SST and winds in the equatorial Pacific are not well represented, and numerical experiments suggest that these problems are initiated by the coupling of either or both wind components. The largest mean SST biases develop along the eastern boundaries of subtropical gyres, and the overall coupled model response is found to be linear. In the South Atlantic, surface currents advect these biases across much of the tropical basin. Significant precipitation responses are found both in the northwest Indian Ocean, and locally where the net result is the loss of an identifiable Atlantic intertropical convergence zone, which can be regained by controlling the coastal temperatures and salinities. Biases off South America and Baja California are shown to significantly degrade ...