Parallel climate model (PCM) control and transient simulations

The Department of Energy (DOE) supported Parallel Climate Model (PCM) makes use of the NCAR Community Climate Model (CCM3) and Land Surface Model (LSM) for the atmospheric and land surface components, respectively, the DOE Los Alamos National Laboratory Parallel Ocean Program (POP) for the ocean com...

Full description

Bibliographic Details
Main Authors: Semtner, A.J. Jr., Washington, W.M., Weatherly, J.W., Meehl, G.A., Bettge, T.W., Craig, A.P., Strand, W.G. Jr., Arblaster, J., Wayland, V.B., James, R., Zhang, Y.
Other Authors: Naval Postgraduate School (U.S.)
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer-Verlag 2000
Subjects:
Online Access:https://hdl.handle.net/10945/48927
Description
Summary:The Department of Energy (DOE) supported Parallel Climate Model (PCM) makes use of the NCAR Community Climate Model (CCM3) and Land Surface Model (LSM) for the atmospheric and land surface components, respectively, the DOE Los Alamos National Laboratory Parallel Ocean Program (POP) for the ocean component, and the Naval Postgraduate School sea-ice model. The PCM executes on several distributed and shared memory computer systems. The coupling method is similar to that used in the NCAR Climate System Model (CSM) in that a flux coupler ties the components together, with interpolations between the different grids of the component models. Flux adjustments are not used in the PCM. The ocean component has 2/3° average horizontal grid spacing with 32 vertical levels and a free surface that allows calculation of sea level changes. Near the equator, the grid spacing is approximately 1/2° in latitude to better capture the ocean equatorial dynamics. The North Pole is rotated over northern North America thus producing resolution smaller than 2/3° in the North Atlantic where the sinking part of the world conveyor circulation largely takes place. Because this ocean model component does not have a computational point at the North Pole, the Arctic Ocean circulation systems are more realistic and similar to the observed. The elastic viscous plastic sea ice model has a grid spacing of 27 km to represent small-scale features such as ice transport through the Canadian Archipelago and the East Greenland current region. Results from a 300 year present-day coupled climate control simulation are presented, as well as for a transient 1% per compound CO₂ increase experiment which shows a global warming of 1.27°C for a 10 year average at the doubling point of CO₂ and 2.89°C at the quadrupling point. There is a gradual warming beyond the doubling and quadrupling points with CO₂ held constant. Globally averaged sea level rise at the time of CO₂ doubling is approximately 7 cm and at the time of quadrupling it is 23 cm. Some of the regional ...