Mineralogical Signatures of Cold and Icy Climates on Ancient and Modern Mars

Liquid water was abundant on early Mars, but whether the climate was warm and wet or cold and icy with punctuated periods of melting is still poorly understood. Modern climate models for Mars tend to predict a colder, icier early climate than previously imagined [e.g., 1]. However, any model for the...

Full description

Bibliographic Details
Main Authors: Smith, R. J., Scudder, N. A., Rutledge, A., Horgan, B., Graly, J., Rampe, E. B.
Format: Other/Unknown Material
Language:unknown
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/2060/20190029154
Description
Summary:Liquid water was abundant on early Mars, but whether the climate was warm and wet or cold and icy with punctuated periods of melting is still poorly understood. Modern climate models for Mars tend to predict a colder, icier early climate than previously imagined [e.g., 1]. However, any model for the early climate on Mars must be reconciled with the chemical record. We currently do not understand how alteration mineralogy formed in snow and ice dominated conditions compares to that of warmer climates, and it is unclear whether cold climate weathering could form all or any of the aqueous alteration phases expressed on early martian surfaces [2]. To help resolve this knowledge gap, we synthesize results from glacial Mars analog sites at the Three Sisters, Oregon and mafic regions of the Antarctic ice sheet, and compare them to the surface mineralogy of Mars. These sites provide the opportunity to investigate weathering in environments analogous to glacial environments on Mars throughout geologic time, including snowpacks or smaller wet-based or polythermal glaciers [3, 4] as well as the proposed extensive ice sheets of the late Noachian icy highlands model