Principal Modes of Precipitation Variability from Preliminary Series of IMERG Data

The Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission, IMERG, is the unified U.S. algorithm that provides merged Microwave Infrared (IR) satellite precipitation product for the U.S. GPM team. Even though IMERG record is still very short, 2014-2016, it is te...

Full description

Bibliographic Details
Main Authors: Vollmer, B., Huffman, G., Savtchenko, A.
Format: Other/Unknown Material
Language:unknown
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/2060/20160014823
Description
Summary:The Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission, IMERG, is the unified U.S. algorithm that provides merged Microwave Infrared (IR) satellite precipitation product for the U.S. GPM team. Even though IMERG record is still very short, 2014-2016, it is tempting to test if it captures ENSO and NAO signals as compared to the popular, still on-going, TRMM Multi-satellite Precipitation Analysis, TMPA. El Nino Southern Oscillation (ENSO) is the most significant mode of interannual variability of tropical ocean atmosphere. North Atlantic Oscillation (NAO) impact is on monthly scales and is mostly an atmospheric mode in the North Atlantic. There exist well-defined, multivariate, indexes that represent ENSO and NAO conditions and phase.