Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory (MSL) Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crat...

Full description

Bibliographic Details
Main Authors: Coll, P., Summons, R. E., Fairen, A. G., Martin, M. G., Navarro-Gonzalez, R., Archer Jr, P.D., Szopa, C., Eigenbrode, J. L., Des Marais, D. J., Dworkin, J. P., Ming, D. W., Brunner, A. E., Grotzinger, J. P., Miller, K. E., Glavin, D. P., Brinckerhoff, W. B., Leshin, L. A., McAdam, A. C., Atreya, S. K., Mahaffy, P. R., Steele, A., Malespin, C. A., Conrad, P. G., Pavlov, A. A., Freissinet, C., Martin-Torres, F. J., Francois, P., Prats, B. D., Buch, A., Stern, J. C., Kate, I. L. ten, Franz, H. B., Squyres, S. W., Cabane, M., Kashyap, S.
Format: Other/Unknown Material
Language:unknown
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/2060/20150006825
Description
Summary:The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory (MSL) Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS), and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian (e.g. igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets or interplanetary dust particles.