Lunar Crustal History from Isotopic Studies of Lunar Anorthosites

Anorthosites occur ubiquitously within the lunar crust at depths of approx.3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. [1]. We will present recent chronological studies of anorthosites [2] that are relevant both to the LMO hypothesis and also to the lunar cataclysm hy...

Full description

Bibliographic Details
Main Authors: Bogard, D. D., Shih, C.-Y., Nyquist, Laurence E., Yamaguchi, A.
Format: Other/Unknown Material
Language:unknown
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/2060/20100010840
Description
Summary:Anorthosites occur ubiquitously within the lunar crust at depths of approx.3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. [1]. We will present recent chronological studies of anorthosites [2] that are relevant both to the LMO hypothesis and also to the lunar cataclysm hypothesis. Old (approx.4.4 Ga) Sm-Nd ages have been determined for some Apollo 16 anorthosites, and primitive initial Sr-87/Sr-86 ratios have been measured for several, but well-defined Rb-Sr ages concordant with the Sm-Nd ages have not been determined until now. Lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater, has concordant Sm-Nd and Rb-Sr ages of 4.47+/-0.07 Ga and 4.49+/-0.07 Ga, respectively. Initial Nd-143/Nd-144 determined from the Sm-Nd isochron corresponds to E(sub Nd,CHUR) = 0.3+/-0.5 compared to a Chondritic Uniform Reservoir, or E(sub Nd,HEDPB) = -0.6+/-0.5 compared to the initial Nd-143/Nd-144 of the HED Parent Body [3]. Lunar anorthosites tend to have E(sub Nd) > 0 when compared to CHUR, apparently inconsistent with derivation from a single lunar magma ocean. Although E(sub Nd) < 0 for some anorthosites, if lunar initial Nd-143/Nd-144 is taken equal to HEDR for the HED parent body [3], enough variability remains among the anorthosite data alone to suggest that lunar anorthosites do not derive from a single source, i.e., they are not all products of the LMO. An anorthositic clast from desert meteorite Dhofar 908 has an Ar-39-Ar-40 age of 4.42+/-0.04 Ga, the same as the 4.36-4.41+/-0.035 Ga Ar-39-Ar-40 age of anorthositic clast Y-86032,116 in Antarctic meteorite Yamato- 86032 [3,4]. Conclusions: (i) Lunar anorthosites come from diverse sources. Orbital geochemical studies confirm variability in lunar crustal composition [1, 5]. We suggest that the variability extends to anorthosites alone as shown by the Sm-Nd data (Fig. 2) and the existence of magnesian anorthosites (MAN, [6]) and "An93 anorthosites" [3,4]. (ii) Anorthositic clasts in lunar meteorites retain "high" Ar-Ar ages compared to Apollo anorthosites. This is perhaps a hint that "cataclysmic" impacts were on average less energetic in the mostly farside source regions of these meteorites than on the lunar nearside.