Chemistry, Dynamics, and Radiation of Ozone Loss: Airborne Measurements of OH, HO2, N02, Cl0, BrO, IO, ClON02, BrON02, CIOOCl, and H2O

This research addresses, through a combination of in situ and remote aircraft-borne Which mechanisms are responsible for the continuing erosion of ozone over midlatitudes of the Northern Hemisphere? Will the rapid loss of ozone over the Arctic in late winter continue to worsen over the next two deca...

Full description

Bibliographic Details
Main Author: Anderson, James G.
Language:unknown
Published: 2005
Subjects:
Online Access:http://hdl.handle.net/2060/20050180666
Description
Summary:This research addresses, through a combination of in situ and remote aircraft-borne Which mechanisms are responsible for the continuing erosion of ozone over midlatitudes of the Northern Hemisphere? Will the rapid loss of ozone over the Arctic in late winter continue to worsen over the next two decades? Are these large losses dynamically coupled to midlatitudes? Which mechanisms dictate the rate of exchange of material between the troposphere and stratosphere? How will these processes change in response to changes in climate? Will regional scale pollution episodes, that are emerging as predictable seasonal events, significantly affect the middle-to-upper troposphere chemical composition. If so, how will these changes alter the chemical composition of the middle world? What changes are predicted for the overworld? Why has the arctic stratosphere become colder in the late winter phase in recent years? Have increases in tropical upper troposphere temperatures increased the temperature gradient such as to change the trajectories of vertically propagating waves, thus reducing the effectiveness of the meridional circulation for transport of heat, momentum and ozone from the tropics to high latitudes?