Analysis of North Atlantic Aircraft Data on Oxygenated Intermediate Species Using an Adapted Regional Chemistry-Transport Model

Our study is on the interaction of nitrogen oxides with organics as they are exported from their complex sources in Eastern North America. Both urban and specific industrial emissions contribute the nitrogen of the C-H-O-N compounds that affect the global atmosphere, helping determine both ozone and...

Full description

Bibliographic Details
Main Authors: Chatfield, Robert, Mathur, Rohit, Guan, Hong, Esswein, Robert, Alapaty, Kiran, Binkowski, Frank, Hanna, Adel
Format: Other/Unknown Material
Language:unknown
Published: 2004
Subjects:
Online Access:http://hdl.handle.net/2060/20040084564
Description
Summary:Our study is on the interaction of nitrogen oxides with organics as they are exported from their complex sources in Eastern North America. Both urban and specific industrial emissions contribute the nitrogen of the C-H-O-N compounds that affect the global atmosphere, helping determine both ozone and the self-cleaning radical chemistry of the troposphere mediated by the OH radical. Different industrial sources, urban, and natural emissions contribute the organic C. Peroxyacetyl nitrate, CH3C(double bonds O)OONO2 is the most interesting compound for which we can measure the outflow to the full depth of the Atlantic troposphere. As we adapt the 3-d chemical model to describe outflow for specific periods with sufficient accuracy, we are analyzing some valuable information in the NARE-97 complete airborne dataset. (NARE: North Atlantic Regional Experiment). Ames researchers find that there are substantial puzzles in the ratios of PAN/NO2. Peroxy acetyl nitrate provides one of the major long-distance export pathways for active nitrogen from Eastern North America. It should be closely linked with NO, (defined as the sum NO + NO2) by simple thermal association and decomposition reactions, at least when the ambient temperature is substantially above 5 C.