Blowing Snow Over the Antarctic Plateau

Studies of blowing snow over Antarctica have been limited greatly by the remoteness and harsh conditions of the region. Space-based observations are also of lesser value than elsewhere, given the similarities between ice clouds and snow-covered surfaces, both at infrared and visible wavelengths. It...

Full description

Bibliographic Details
Main Authors: Campbell, James R., Spinhirne, James D., Mahesh, Ashwin, Eager, Rebecca
Language:unknown
Published: 2002
Subjects:
Online Access:http://hdl.handle.net/2060/20030053141
Description
Summary:Studies of blowing snow over Antarctica have been limited greatly by the remoteness and harsh conditions of the region. Space-based observations are also of lesser value than elsewhere, given the similarities between ice clouds and snow-covered surfaces, both at infrared and visible wavelengths. It is only in recent years that routine ground-based observation programs have acquired sufficient data to overcome the gap in our understanding of surface blowing snow. In this paper, observations of blowing snow from visual observers' records as well as ground-based spectral and lidar programs at South Pole station are analyzed to obtain the first climatology of blowing snow over the Antarctic plateau. Occurrence frequencies, correlation with wind direction and speed, typical layer heights, as well as optical depths are determined. Blowing snow is seen in roughly one third of the visual observations and occurs under a narrow range of wind directions. The near-surface layers typically a few hundred meters thick emit radiances similar to those from thin clouds. Because blowing snow remains close to the surface and is frequently present, it will produce small biases in space-borne altimetry; these must be properly estimated and corrected.