Bio-Optical Measurement and Modeling of the California Current and Polar Oceans

The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and adv...

Full description

Bibliographic Details
Main Authors: Mitchell, B. Greg, Fargion, Giulietta S.
Format: Other/Unknown Material
Language:unknown
Published: 2001
Subjects:
Online Access:http://hdl.handle.net/2060/20010107999
Description
Summary:The principal goals of our research are to validate standard or experimental products through detailed bio-optical and biogeochemical measurements, and to combine ocean optical observations with advanced radiative transfer modeling to contribute to satellite vicarious radiometric calibration and advanced algorithm development. To achieve our goals requires continued efforts to execute complex field programs globally, as well as development of advanced ocean optical measurement protocols. We completed a comprehensive set of ocean optical observations in the California Current, Southern Ocean, Indian Ocean requiring a large commitment to instrument calibration, measurement protocols, data processing and data merger. We augmented separately funded projects of our own, as well as others, to acquire ill situ data sets we have collected on various global cruises supported by separate grants or contracts. In collaboration with major oceanographic ship-based observation programs funded by various agencies (CalCOFI, US JGOFS, NOAA AMLR, INDOEX and Japan/East Sea) our SIMBIOS effort has resulted in data from diverse bio-optical provinces. For these global deployments we generate a high-quality, methodologically consistent, data set encompassing a wide-range of oceanic conditions. Global data collected in recent years have been integrated with our on-going CalCOFI database and have been used to evaluate SeaWiFS algorithms and to carry out validation studies. The combined database we have assembled now comprises more than 700 stations and includes observations for the clearest oligotrophic waters, highly eutrophic blooms, red-tides and coastal case 2 conditions. The data has been used to validate water-leaving radiance estimated with SeaWiFS as well as bio-optical algorithms for chlorophyll pigments. The comprehensive data is utilized for development of experimental algorithms (e.g. high-low latitude pigment transition, phytoplankton absorption, and cDOM). During this period we completed 9 peer-reviewed publications in high quality journals, and presented aspects of our work at more than 10 scientific conferences.