Water Isotopes in Precipitation: Data/Model Comparison for Present-Day and Past Climates

Variations of HDO and H2O-18 concentrations are observed in precipitation both on a geographical and on a temporal basis. These variations, resulting from successive isotopic fractionation processes at each phase change of water during its atmospheric cycle, are well documented through the IAEA/WMO...

Full description

Bibliographic Details
Main Authors: Masson, V., Hoffmann, G., Jouzel, J.
Language:unknown
Published: 1998
Subjects:
Online Access:http://hdl.handle.net/2060/19990046710
Description
Summary:Variations of HDO and H2O-18 concentrations are observed in precipitation both on a geographical and on a temporal basis. These variations, resulting from successive isotopic fractionation processes at each phase change of water during its atmospheric cycle, are well documented through the IAEA/WMO network and other sources. Isotope concentrations are, in middle and high latitudes, linearly related to the annual mean temperature at the precipitation site. Paleoclimatologists have used this relationship to infer paleotemperatures from isotope paleodata extractable from ice cores, deep groundwater and other such sources. For this application to be valid, however, the spatial relationship must also hold in time at a given location as the location undergoes a series of climatic changes. Progress in water isotope modeling aimed at examining and evaluating this assumption has been recently reviewed with a focus on polar regions and, more specifically, on Greenland. This article was largely based on the results obtained using the isotopic version of the NASA/GISS Atmospheric General Circulation Model (AGCM) fitted with isotope tracer diagnostics. We extend this review in comparing the results of two different isotopic AGCMs (NASA/GISS and ECHAM) and in examining, with a more global perspective, the validity of the above assumption, i.e. the equivalence of the spatial and temporal isotope-temperature relationship. We also examine recent progress made in modeling the relationship between the conditions prevailing in moisture source regions for precipitation and the deuterium-excess of that precipitation.