Detecting change as it occurs

Traditionally climate changes have been detected from long series of observations and long after they have happened. Our 'inverse sequential' procedure, for detecting change as soon as it occurs, describes the existing or most recent data by their frequency distribution. Its parameter(s) a...

Full description

Bibliographic Details
Main Authors: Brown, Timothy J., Radok, Uwe
Format: Other/Unknown Material
Language:unknown
Published: 1992
Subjects:
Online Access:http://hdl.handle.net/2060/19930010295
Description
Summary:Traditionally climate changes have been detected from long series of observations and long after they have happened. Our 'inverse sequential' procedure, for detecting change as soon as it occurs, describes the existing or most recent data by their frequency distribution. Its parameter(s) are estimated both from the existing set of observations and from the same set augmented by 1,2,.j new observations. Individual-value probability products ('likelihoods') are used to form ratios which yield two probabilities for erroneously accepting the existing parameter(s) as valid for the augmented data set, and vice versa. A genuine parameter change is signaled when these probabilities (or a more stable compound probability) show a progressive decrease. New parameter values can then be estimated from the new observations alone using standard statistical techniques. The inverse sequential procedure will be illustrated for global annual mean temperatures (assumed normally distributed), and for annual numbers of North Atlantic hurricanes (assumed to represent Poisson distributions). The procedure was developed, but not yet tested, for linear or exponential trends, and for chi-squared means or degrees of freedom, a special measure of autocorrelation.