Polar stratospheric cloud processed air and potential vorticity in the Northern Hemisphere lower stratosphere at mid-latitudes during winter

The present study compares small-scale (less than 100 km) features in ER-2 measurements of ClO, O3, H2O, N2O, and NO(y) outside the lower stratospheric Arctic vortex of 1988-1989 with features on potential vorticity maps from ECMWF. The potential vorticity maps are obtained from T106 analyses and fo...

Full description

Bibliographic Details
Main Authors: Tuck, A. F., Davies, T., Hovde, S. J., Noguer-Alba, M., Fahey, D. W., Kawa, S. R., Kelly, K. K., Murphy, D. M., Proffitt, M. H., Margitan, J. J.
Format: Other/Unknown Material
Language:unknown
Published: 1992
Subjects:
46
Online Access:http://ntrs.nasa.gov/search.jsp?R=19920059281
Description
Summary:The present study compares small-scale (less than 100 km) features in ER-2 measurements of ClO, O3, H2O, N2O, and NO(y) outside the lower stratospheric Arctic vortex of 1988-1989 with features on potential vorticity maps from ECMWF. The potential vorticity maps are obtained from T106 analyses and forecasts. Some of the plots were truncated to lower resolution (T63 or T42) which smooths out the finer-scale structure. Comparison of these lower resolution plots shows how much detail is lost by excessive smoothing. It is also evident that the forecast plots lose fine-scale structure due to dissipation in the model resulting mainly from horizontal diffusion. It is concluded that blobs of air on the maps at latitudes between the vortex edge and 25 deg N having potential vorticities characteristic of the vortex did indeed originate from the vortex, but that the real atmosphere is more sharply differentiated than the meteorological analyses, implying that the potential vorticity maps underestimate the amount of peeled-off material.