Mathematical morphology for automated analysis of remotely sensed objects in radar images

A symbiosis of pyramidal segmentation and morphological transmission is described. The pyramidal segmentation portion of the symbiosis has resulted in low (2.6 percent) misclassification error rate for a one-look simulation. Other simulations indicate lower error rates (1.8 percent for a four-look i...

Full description

Bibliographic Details
Main Authors: Daida, Jason M., Vesecky, John F.
Format: Other/Unknown Material
Language:unknown
Published: 1991
Subjects:
43
Online Access:http://ntrs.nasa.gov/search.jsp?R=19920052591
Description
Summary:A symbiosis of pyramidal segmentation and morphological transmission is described. The pyramidal segmentation portion of the symbiosis has resulted in low (2.6 percent) misclassification error rate for a one-look simulation. Other simulations indicate lower error rates (1.8 percent for a four-look image). The morphological transformation portion has resulted in meaningful partitions with a minimal loss of fractal boundary information. An unpublished version of Thicken, suitable for watersheds transformations of fractal objects, is also presented. It is demonstrated that the proposed symbiosis works with SAR (synthetic aperture radar) images: in this case, a four-look Seasat image of sea ice. It is concluded that the symbiotic forms of both segmentation and morphological transformation seem well suited for unsupervised geophysical analysis.