Climate change and the middle atmosphere. II - The impact of volcanic aerosols

The response of the middle atmosphere to an increase in stratospheric aerosols, normally associated with increased volcanic activity, is investigated. The aerosols are found to induce a direct stratospheric response, with warming in the tropical lower stratosphere, and cooling at higher latitudes. O...

Full description

Bibliographic Details
Main Authors: Rind, D., Balachandran, N. K., Suozzo, R.
Format: Other/Unknown Material
Language:unknown
Published: 1992
Subjects:
47
Online Access:http://ntrs.nasa.gov/search.jsp?R=19920047862
Description
Summary:The response of the middle atmosphere to an increase in stratospheric aerosols, normally associated with increased volcanic activity, is investigated. The aerosols are found to induce a direct stratospheric response, with warming in the tropical lower stratosphere, and cooling at higher latitudes. On the shorter time scales, this radiative effect increases tropospheric static stability at low- to midlatitudes, which reduces the intensity of the Hadley cell and Ferrel cell. There is an associated increase in tropospheric standing wave energy and a decrease in midlatitude west winds, which result in additional wave energy propagation into the stratosphere at lower midlatitudes in both hemispheres. On the longer time scale, a strong hemispheric asymmetry arises. In the Northern Hemisphere eddy energy decreases, as does the middle-atmosphere residual circulation, and widespread stratospheric cooling results. In the Southern Hemisphere, the large increase in sea ice increases the tropospheric latitudinal temperature gradient, leading to increased eddy energy, an increased middle-atmosphere residual circulation, and some high-latitude stratospheric warming.