Dehydration in the lower Antarctic stratosphere in late winter and spring

The history of minimum temperatures at 50 and 70 mb is examined from NMC, UK Met 0 and ECMWF analyses. MSU channel 24 data are similarly inspected. South Pole sonde data are used to calculate saturation humidity mixing ratio as a function of altitude and time throughout 1987. Saturation with respect...

Full description

Bibliographic Details
Main Authors: Heidt, L. E., Ferry, G. V., Tuck, A. F., Fahey, D. W., Kelly, K. K., Murphy, D. M., Mckenna, D. S., Proffitt, M. H., Loewenstein, M., Jones, R. L.
Format: Other/Unknown Material
Language:unknown
Published: 1988
Subjects:
Online Access:http://hdl.handle.net/2060/19890005193
Description
Summary:The history of minimum temperatures at 50 and 70 mb is examined from NMC, UK Met 0 and ECMWF analyses. MSU channel 24 data are similarly inspected. South Pole sonde data are used to calculate saturation humidity mixing ratio as a function of altitude and time throughout 1987. Saturation with respect to ice could be maintained for water mixing ratios of 3.5 ppmv for a period of about 80 days from mid-June to mid-September. Dehydration to mixing ratios of 1 ppmv or less was possible sporadically. Data from the ER-2 flights between 53 S and 72 S are used in conjunction with particle size measurements and air parcel trajectories to demonstrate the dehydration occurring over Antarctica. Water mixing ratios at the latitude of Punta Arenas (53 S), in conjunction with tracer measurements and trajectory analysis, show that at potential temperatures from about 325 to 400 K, the dryness (less than 3 ppmv) had its origin over Antarctica rather than in the tropics. Water mixing ratios within the Antarctic vortex varied from 1.5 to 3.8 ppmv, with a strong isentropic gradient being evident in the region of high potential vorticity gradients.