Quantitative observations of the behavior of anomalous low altitude ClO in the Antarctic spring Stratosphere, 1987

During the second National Ozone Expedition ground-based observations at McMurdo Station Antarctica were performed which resulted in a second season's measurement of abnormally large amounts of ClO in the Antarctic spring stratosphere. The original measurements of 1986, in which the presence of...

Full description

Bibliographic Details
Main Authors: Solomon, P., Barrett, J., Dezafra, R. L., Jaramillo, M., Parrish, A., Emmons, L.
Format: Other/Unknown Material
Language:unknown
Published: 1988
Subjects:
Online Access:http://hdl.handle.net/2060/19890005177
Description
Summary:During the second National Ozone Expedition ground-based observations at McMurdo Station Antarctica were performed which resulted in a second season's measurement of abnormally large amounts of ClO in the Antarctic spring stratosphere. The original measurements of 1986, in which the presence of this anomalous layer was first discovered, were limited in low altitude recovery of the ClO mixing ratio profile by the restrictions of the spectral bandwidth (256 MHz) which was used to measure the pressure-broadened ClO emission line shape. The 1987 measurements were marked by the use of twice the spectral bandpass employed the previous year, and allow a better characterization of the ClO mixing ratio profile in the critical altitude range 18 to 25 km. In-situ aircraft measurements of ClO made over the Palmer Peninsula during Aug. and Sept. of 1987 by Anderson, et al. effectively determined the important question of the ClO mixing ratio profile at altitudes inaccessible to our technique, below approximately 18 to 18.5 km. These flights did not penetrate further than 75 deg S, however, (vs 78 deg S for McMurdo) and were thus limited to coverage near the outer boundaries of the region of severest ozone depletion over Antarctica in 1987, did not reach an altitude convincingly above that of the peak mixing ratio for ClO, and were not able to make significant observations of the diurnal variation of ClO. The two techniques, and the body of data recovered by each, thus complement one another in producing a full picture of the anomalous ClO layer intimately connected with the region of Antarctic spring ozone depletion. An analysis is presented of the mixing ratio profile from approximately 18 to 45 km, the diurnal behavior, and the secular change in ClO over McMurdo Station during Sept. and early Oct. 1987.