Laboratory studies of sticking coefficients and heterogeneous reactions important in the stratosphere

The discovery of ozone depletion during spring in the Antarctic stratosphere has received wide spread attention. Both meteorological and chemical mechanisms have been used in attempts to explain this observation. The chemical theory focused on the chlorofluoromethanes released into the atmosphere. H...

Full description

Bibliographic Details
Main Author: Leu, Ming-Taun
Format: Other/Unknown Material
Language:unknown
Published: 1988
Subjects:
Online Access:http://hdl.handle.net/2060/19890005168
Description
Summary:The discovery of ozone depletion during spring in the Antarctic stratosphere has received wide spread attention. Both meteorological and chemical mechanisms have been used in attempts to explain this observation. The chemical theory focused on the chlorofluoromethanes released into the atmosphere. However, gas-phase, homogeneous reactions alone in the model can not adequately explain such a depletion. Heterogeneous reactions on ice surfaces could be important in the Antarctic stratosphere. These reactions are thought to convert ClONO2 and N2O5 into HNO3 in the solid phase while Cl2, HOCl, and ClNO2 are released into the stratosphere as gas-phase products. The photolysis of Cl2, HOCl, and ClNO2, then produces active chlorine which subsequently removes ozone through several catalytic cycles, including the Cl2O2 mechanism. The polar stratospheric clouds are thought to consist of mixtures of water ice, nitric acid, and sulfuric acid. Condensation of HCl onto the PSC's could provide active surfaces for heterogeneous reactions.