DMSP-SSM/1 NASA algorithm validation using primarily LANDSAT and secondarily DMSP and/or AVHRR visible and thermal infrared satellite imagery

The approach to the DMSP SSMI (Defense Meteorological Satellite Program; Special Sensor Microwave Imager) sea-ice validation effort is to demonstrate a quantitative relationship between the SSMI-derived sea ice parameters and those same parameters derived from other data sets including visible and i...

Full description

Bibliographic Details
Main Authors: Steffen, K., Barry, R., Schweiger, A.
Format: Other/Unknown Material
Language:unknown
Published: 1988
Subjects:
Online Access:http://hdl.handle.net/2060/19880015640
Description
Summary:The approach to the DMSP SSMI (Defense Meteorological Satellite Program; Special Sensor Microwave Imager) sea-ice validation effort is to demonstrate a quantitative relationship between the SSMI-derived sea ice parameters and those same parameters derived from other data sets including visible and infrared satellite imagery, aerial photographic and high-resolution microwave aircraft imagery. The question to be addressed is to what accuracy (relative to these other observations) can the following ice parameters be determined: (1) position of the ice boundary; (2) total sea ice concentration; and (3) multiyear sea ice concentration. Specific tasks include: (1) a study of the interrelationship of surface information content and sensor spatial and spectral resolution in order to establish relationships between ice surface features and the manner in which they are expressed in the satellite observations; and (2) apply these relationships to map the sea ice features which can be used to evaluate NASA's proposed SSM/1 sea ice algorithms. Other key points to be addressed include the accuracy to which these parameters can be determined in different regions (marginal ice zone such as Bering Sea, Arctic ocean, such as Beaufort Sea); the accuracy of these parameters for different seasons; the accuracy of the algorithms weather filter under different weather conditions; and the effectiveness of the 85.5 GHz channels to locate the ice edge.