Mapping of glacial landforms from Seasat radar images

Glacial landforms in the drumlin drift belt of Ireland and the Alaska Range can be identified and mapped from Seasat synthetic-aperture radar (SAR) images. Drumlins cover 60 percent of the Ireland scene. The width/length ratio of individual drumlins can be measured on the SAR images, allowing region...

Full description

Bibliographic Details
Main Author: Ford, J. P.
Format: Other/Unknown Material
Language:unknown
Published: 1984
Subjects:
43
Online Access:http://ntrs.nasa.gov/search.jsp?R=19850045876
Description
Summary:Glacial landforms in the drumlin drift belt of Ireland and the Alaska Range can be identified and mapped from Seasat synthetic-aperture radar (SAR) images. Drumlins cover 60 percent of the Ireland scene. The width/length ratio of individual drumlins can be measured on the SAR images, allowing regional differences in drumlin shape to be mapped. This cannot be done with corresponding Landsat multispectral scanner (MSS) images because of lower spatial resolution and because of shadowing effects that vary seasonally. The Alaska scene shows the extent and nature of morphological features such as medial and lateral moraines, stagnant ice, and fluted ground moraine in glaciated valleys. Perception of these features on corresponding Landsat MSS images is limited by seasonal diffrences in solar illumination. Because SAR is not affected by such differences or by cloud cover, it is particularly well suited for monitoring glacial movement. The disadvantage of distorted high-relief features on Seasat SAR images can be reduced in future SAR systems by modifying the radar illumination geometry.