Spatial variation of sea surface temperature and flux-related parameters measured from aircraft in the JASIN experiment

Spatial variation of some parameters measured on two aircraft flying 100-km box and 200-km triangular patterns at low levels in the atmospheric boundary layer during the Joint Air Sea Interaction Experiment in the North Atlantic was studied. The variation should be representative of summer condition...

Full description

Bibliographic Details
Main Authors: Liu, W. T., Katsaros, K. B.
Format: Other/Unknown Material
Language:unknown
Published: 1984
Subjects:
48
Online Access:http://ntrs.nasa.gov/search.jsp?R=19850033274
Description
Summary:Spatial variation of some parameters measured on two aircraft flying 100-km box and 200-km triangular patterns at low levels in the atmospheric boundary layer during the Joint Air Sea Interaction Experiment in the North Atlantic was studied. The variation should be representative of summer conditions in mid-latitude oceans. The variance density of remotely sensed sea surface temperature, corrected for sky reflection, is found to depend on the one-dimensional wave number raised to the power of approximately -5/3. Nonuniform clouds add low-frequency variance to observations of a downward looking radiometer and result in steeper slope of the spectra of uncorrected sea surface temperature. Turbulent fluxes of momentum, sensible heat, and moisture were determined with the bulk formulae from the parameters (wind speed, temperature, specific humidity, and sea surface temperature) measured from the aircraft. The averages of these fluxes over each flight leg were compared with the fluxes determined from the parameters averaged over the same leg. The difference is negligible, showing that spatially averaged observations, such as those from spaceborne sensors, can be used in the bulk formulae to evaluate the fluxes.