Weathering of Mars - Antarctic analog studies

Subaerial extrusion of lavas above permafrost is proposed as a possible weathering regime leading to the presence of Martian surface fines, and the characteristics of this process are examined through a study of the analogous altered terrestrial basalts from Antarctica. On the basis of mineralogical...

Full description

Bibliographic Details
Main Authors: Berkley, J. L., Drake, M. J.
Format: Other/Unknown Material
Language:unknown
Published: 1981
Subjects:
91
Online Access:http://ntrs.nasa.gov/search.jsp?R=19810053540
Description
Summary:Subaerial extrusion of lavas above permafrost is proposed as a possible weathering regime leading to the presence of Martian surface fines, and the characteristics of this process are examined through a study of the analogous altered terrestrial basalts from Antarctica. On the basis of mineralogical and petrological analyses of samples obtained from core cuttings recovered by the Dry Valley Drilling Program from rocks predominantly of an aklalic basalt-phonolite suite, it is found that in the absence of liquid water, weathering is geologically slow, and that zeolites predominate over clays as secondary mineral. Of the possible weathering processes proposed for Mars, it is concluded that both subaerial extrusion and subpermafrost intrusion of lavas involving liquid water would be less important volumetrically than the hydrothermal alteration of impact melt sheets if water were present during an intense phase of early bombardment, or than subsequent solid-gas alteration reactions. It is thus predicted that the present Martian fines should contain a major contribution from the ancient crust as typified by the southern cratered highlands, and a lesser contribution from the younger basaltic lavas.