Climatic variations on Mars. II - Evolution of carbon dioxide atmosphere and polar caps

The long-term variations in the atmospheric pressure and the polar cap temperature of Mars resulting from the obliquity oscillations are discussed. In performing these calculations, the assumption is made that the atmosphere is in equilibrium with perennial CO2 ice deposits at the north pole, as is...

Full description

Bibliographic Details
Main Authors: Ward, W. R., Murray, B. C., Malin, M. C.
Language:unknown
Published: 1974
Subjects:
30
Online Access:http://ntrs.nasa.gov/search.jsp?R=19740057433
Description
Summary:The long-term variations in the atmospheric pressure and the polar cap temperature of Mars resulting from the obliquity oscillations are discussed. In performing these calculations, the assumption is made that the atmosphere is in equilibrium with perennial CO2 ice deposits at the north pole, as is proposed by Leighton and Murray (1966). If heat transport by the atmosphere is neglected, the temperature of CO2 ice at the poles ranges from about 130 K to about 160 K, the corresponding atmospheric pressure rising from a few tenths of a millibar to about 30 mbar, respectively. The neglect of atmospheric heat transport probably underestimates the peak pressure. Because the altitude of the south cap is about 2 km higher than that of the north cap, CO2 ice is unstable there and will migrate to the north cap at a rate of about 10 g/sq cm yr, the implication being that the south residual cap is water ice. A simplified model of the annual polar caps and pressure fluctuations is also presented.