Evaluate the application of ERTS-A data for detecting and mapping sea ice

The author has identified the following significant results. Sea ice is detectable in all of the ERTS-1 MSS bands and can be distinguished from clouds through a number of interpretive keys. Considerable information on ice type can be derived from the ERTS-1 data. Ice types that appear to be identifi...

Full description

Bibliographic Details
Main Author: Barnes, J. C.
Format: Other/Unknown Material
Language:unknown
Published: 1973
Subjects:
Online Access:http://hdl.handle.net/2060/19730010642
Description
Summary:The author has identified the following significant results. Sea ice is detectable in all of the ERTS-1 MSS bands and can be distinguished from clouds through a number of interpretive keys. Considerable information on ice type can be derived from the ERTS-1 data. Ice types that appear to be identifiable include: ice floes of various categories, pack ice of various concentrations, ice belts, brash ice, rotten ice, fast ice, leads, fractures, cracks, puddles, thaw holes, and flooded ice. Although larger icebergs can be seen, it is difficult to distinguish them from ice floes. Ice features as small as the small floe of 20 to 100 m across can be detected, and the sizes of features somewhat smaller than 100 m can be measured from enlarged ERTS-1 prints. The multispectral analysis of the ERTS-1 MSS-7 bands provides much information on ice type and ice surface features that cannot be derived from a single spectral band. For example, thaw holes can often be distinguished from puddles because of their different appearances in the two bands. These surface features can be indicative of ice age. Furthermore, snow lines on glaciers can be reliably mapped through the joint use of the MSS-4 and 7 data.