Modeling of Future Sea Level Rise Through Melting Glaciers

The aim of this paper is to project 21st century volume changes of all mountain glacier and ice caps and to provide systematic analysis of uncertainties originating from different sources in the and their contribution to sea level rise and the assessment of uncertainties. Trends in global climate wa...

Full description

Bibliographic Details
Published in:SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology
Main Authors: Singh, Manoj Kumar, Singh, Bharat Raj
Format: Article in Journal/Newspaper
Language:English
Published: SMS Institute of Technology 2015
Subjects:
Online Access:http://myresearchjournals.com/index.php/SAMRIDDHI/article/view/1517
https://doi.org/10.18090/samriddhi.v5i1.1517
Description
Summary:The aim of this paper is to project 21st century volume changes of all mountain glacier and ice caps and to provide systematic analysis of uncertainties originating from different sources in the and their contribution to sea level rise and the assessment of uncertainties. Trends in global climate warming and sea level rise are observed during the last 100-years which both, according to global climate models, will continue in the future Intergovernmental Panel on Climate Change (IPCC) State-of-threat knowledge on climate, ocean and land processes identifies melting mountain glaciers and ice caps, after ocean thermal expansion, as the currently second major contributor to sea level rise. However, both the observations and models on sea level changes carry a variety of uncertainties. In this section, by following the question-answer concept, I will briefly present the importance of global sea level change for society, the current state of knowledge of sea level changes in response to climate change and the attempts to project future sea level changes until 2100 including discussion on related uncertainties. Melting mountain glaciers and ice caps (MG&IC) are the second largest contributor to rising sea level after thermal expansion of the oceans and are likely to remain the dominant glaciological contributor to rising sea level in the 21st century. The aim of this work is to project 21st century volume changes of all MG&IC and to provide systematic analysis of uncertainties originating from different sources in the calculation. I provide an ensemble of 21st century volume rojections for all MG&IC from the World Glacier Inventory by modeling the surface mass balance coupled with volume-area-length scaling and forced with temperature and precipitation scenarios from four Global Climate Models (GCMs). By upscaling the volume projections through a regionally differentiated approach to all MG&IC outside Greenland and Antarctica (514,380 km2) I stimated total volume loss for the time period 2001-2100 to range from 0.039 to 0.150 m sea level equivalent. While three GCMs agree that Alaskan glaciers are the main contributors to the projected sea level rise, one GCM projected the largest total volume loss mainly due to Arctic MG&IC.