Movement patterns, behavior, and habitat use of female moose on Joint Base Elmendorf-Richardson, AK

2016 Spring. Includes bibliographical references. Joint Base Elmendorf-Richardson (JBER), which is a combined United States Army/Air Force installation, and neighboring Anchorage, Alaska, support a population of moose Alces alces (Linnaeus, 1758) that inhabit a fragmented landscape of habitat types...

Full description

Bibliographic Details
Main Authors: Battle, David C., author, Rittenhouse, Larry, advisor, Farley, Sean, advisor, Meiman, Paul, committee member, Peel, Kraig, committee member
Format: Text
Language:English
Published: Colorado State University. Libraries 2016
Subjects:
Online Access:http://hdl.handle.net/10217/173501
Description
Summary:2016 Spring. Includes bibliographical references. Joint Base Elmendorf-Richardson (JBER), which is a combined United States Army/Air Force installation, and neighboring Anchorage, Alaska, support a population of moose Alces alces (Linnaeus, 1758) that inhabit a fragmented landscape of habitat types interspersed with human development. Because development plans in support of the military mission may have significant impacts on moose movement in the area, JBER and Alaska Department of Fish and Game (ADF&G) biologists began a study of moose habitat use and behavior on JBER. In order to help identify behaviors in wild radio-collared moose captured on JBER, we tested Telonics tri-axial accelerometers for accuracy in the detection of activity and the identification of behaviors in radio-collared moose. Direct observations of three captive animals fitted with radio collars containing accelerometers allowed us to calibrate activity readings to observed behaviors. We developed four datasets in order to test whether readings from this type of accelerometer could identify specific behaviors (browsing, grazing, walking, standing, lying), behavior categories (feeding, traveling, resting), or simply when moose were active or inactive. Multiple threshold criteria were tested in order to maximize correlation to observed behaviors. The highest overall accuracy was achieved when using threshold criteria to characterize behaviors as active (92.29% accuracy) or inactive (90.64% accuracy). A Fisher’s Exact Test indicated that there was no significant difference between observed behaviors and those correctly classified using threshold criteria for either active (p = .9728) or inactive (p = .9431) behaviors, indicating that our threshold criteria is correctly classifying these behaviors. In the next phase of this study, we collected 244,957 GPS locations from 18 female moose captured on JBER and fitted with GPS collars equipped with the same model tri-axial accelerometer used in the captive trials. Data from the accelerometers ...