Uranium-series radionuclide records of paleoceanographic and sedimentary changes in the Arctic Ocean

Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009. Includes bibliographical references. The radionuclides ²³¹Pa and ²³⁰Th, produced in the water column and re...

Full description

Bibliographic Details
Main Author: Hoffmann, Sharon Susanna
Other Authors: Jerry F. McManus., Woods Hole Oceanographic Institution., Joint Program in Oceanography, Woods Hole Oceanographic Institution, Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Format: Thesis
Language:English
Published: Massachusetts Institute of Technology 2009
Subjects:
Online Access:http://hdl.handle.net/1721.1/55329
Description
Summary:Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009. Includes bibliographical references. The radionuclides ²³¹Pa and ²³⁰Th, produced in the water column and removed from the ocean by particle scavenging and burial in sediments, offer a means for paleoceanographers to examine past dynamics of both water column and sedimentary processes. I show for the first time that a state of balance exists between ²³⁰Th production and burial in the Central Arctic basins, based on measured sedimentary ²³⁰Th, inventories in box cores, establishing this nuclide's utility as a paleoceanographic indicator of sedimentary processes and as a normalization tool. I present the first ²³⁰Th-normalized particle fluxes calculated for the central Arctic: vertical particle fluxes were extremely low during the late glacial, rose during the deglaciation due to particle inputs from shelf inundation, increased productivity and ice-rafted debris, and fell again following the establishment of interglacial conditions. A major event of lateral sediment redistribution, inferred from surplus ²³⁰Th, inventories, occurred in the Makarov Basin during the deglaciation and may have been due to destabilization of slope and shelf sediments as sea level rose. I present the first high-resolution, radiocarbon-dated downcore records of sedimentary ²³¹Pa/²³⁰Th from the Arctic Ocean. Low ratios indicate that ²³¹Pa was exported from all sites during the late glacial period, with export decreasing during the deglaciation and Holocene. 231Pa/²³⁰Th measurements in cores from three continental slope sites show no evidence for a ²³¹Pa sink related to boundary scavenging on the continental slopes. Holocene ²³¹Pa/²³⁰Th ratios show a very significant variation by depth, with strong export of ²³¹Pa at deep sites but little or no export at shallow sites, a result which echoes findings for the South Atlantic and the Pacific. (cont.) ...