Ocean acidification responses in paralarval squid swimming behavior using a novel 3D tracking system

Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated...

Full description

Bibliographic Details
Published in:Hydrobiologia
Main Authors: Wirth, Colin, Mooney, T. Aran, Zakroff, Casey James
Other Authors: Joint Program in Oceanography, Woods Hole Oceanographic Institution
Format: Article in Journal/Newspaper
Language:English
Published: Springer International Publishing 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/114393
Description
Summary:Chronic embryonic exposure to ocean acidification (OA) has been shown to degrade the aragonitic statolith of paralarval squid, Doryteuthis pealeii, a key structure for their swimming behavior. This study examined if day-of-hatching paralarval D. pealeii from eggs reared under chronic OA demonstrated measurable impairments to swimming activity and control. This required the development of a novel, cost-effective, and robust method for 3D motion tracking and analysis. Squid eggs were reared in pCO[subscript 2] levels in a dose-dependent manner ranging from 400 to 2200 ppm. Initial 2D experiments showed paralarvae in higher acidification environments spent more time at depth. In 3D experiments, velocity, particularly positive and negative vertical velocities, significantly decreased from 400 to 1000 ppm pCO[subscript 2], but showed non-significant decreases at higher concentrations. Activity and horizontal velocity decreased linearly with increasing pCO[subscript 2], indicating a subtle impact to paralarval energetics. Patterns may have been obscured by notable individual variability in the paralarvae. Responses were also seen to vary between trials on cohort or potentially annual scales. Overall, paralarval swimming appeared resilient to OA, with effects being slight. The newly developed 3D tracking system provides a powerful and accessible method for future studies to explore similar questions in the larvae of aquatic taxa. Keywords: Hypercapnia, Cephalopod, Larvae, Movement analysis, Stress physiology National Science Foundation (U.S.) (Grant 1220034)