Morphological PDE and dilation/erosion semigroups on length spaces

International audience This paper gives a survey of recent research on Hamilton-Jacobi partial dierential equations (PDE) on length spaces. This theory provides the background to formulate morphological PDEs for processing data and images supported on a length space, without the need of a Riemmanian...

Full description

Bibliographic Details
Main Author: Angulo, Jesus
Other Authors: Centre de Morphologie Mathématique (CMM), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Springer-Verlag Berlin Heidelberg
Format: Conference Object
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://minesparis-psl.hal.science/hal-01108145
https://minesparis-psl.hal.science/hal-01108145v3/document
https://minesparis-psl.hal.science/hal-01108145v3/file/HamiltonJacobiSemigroupMetricSpaces_ISMM15_final.pdf
https://doi.org/10.1007/978-3-319-18720-4_43
Description
Summary:International audience This paper gives a survey of recent research on Hamilton-Jacobi partial dierential equations (PDE) on length spaces. This theory provides the background to formulate morphological PDEs for processing data and images supported on a length space, without the need of a Riemmanian structure. We first introduce the most general pair of dilation/erosion semigroups on a length space, whose basic ingredients are the metric distance and a convex shape function. The second objective is to show under which conditions the solution of a morphological PDE in the length space framework is equal to the dilation/erosion semigroups.