Arctic ice-wedge landscape mapping by CNN using a fusion of Radarsat constellation Mission and ArcticDEM

In Canada's Arctic tundra region, permafrost is continuous, and the landscape is rich in patterned features. Polygonal terrain, which includes both high- and low-centered features and their wet trenches below, is considered to be high-latitude wetlands in the continuous permafrost region. These...

Full description

Bibliographic Details
Published in:Remote Sensing of Environment
Main Authors: Merchant, Michael, Bourgeau-Chavez, Laura, Mahdianpari, Masoud, Brisco, Brian, Obadia, Mayah, DeVries, Ben, Berg, Aaron
Format: Text
Language:unknown
Published: Digital Commons @ Michigan Tech 2024
Subjects:
Online Access:https://digitalcommons.mtu.edu/michigantech-p2/512
https://doi.org/10.1016/j.rse.2024.114052
Description
Summary:In Canada's Arctic tundra region, permafrost is continuous, and the landscape is rich in patterned features. Polygonal terrain, which includes both high- and low-centered features and their wet trenches below, is considered to be high-latitude wetlands in the continuous permafrost region. These prominent hydrological features retain and transport water within widespread ice-wedge networks and govern many ecosystem dynamics. Due to the meter-scale spatial gradients of these processes, mapping of polygonal wetland networks necessitates high-resolution imagery. To date, most studies have used optical imagery for this task; however, these sensors are affected by cloud cover and polar darkness, limiting image availability and repeatability. Thus, our overall objective was to evaluate high-resolution hybrid compact polarimetric (HCP) imagery from the recently launched Radarsat Constellation Mission (RCM), in fusion with ArcticDEM topographic data, for Arctic landscape mapping with a focus on polygonal wetlands. RCM's 5 m Stripmap beam mode, which has yet to be studied for such a task, represents an innovative HCP synthetic aperture radar (SAR) data source since it allows for polarimetric decomposition methods, despite being a dual-pol system. Within this study, we present a seven-input channel Convolutional Neural Network (CNN) model for the classification of ice-wedge dominated landscapes. A range of model hyperparameters as well as the effect of SAR speckle filtering on classification accuracy, have been examined. The optimized CNN achieved a high classification accuracy (0.931 mean Intersection Over Union; mIOU) for three semantic classes representative of the study area, namely polygonal wetlands, open water, and uplands. These results were superior in comparison to a benchmark machine learning (ML) Random Forest (RF) algorithm, thus demonstrating the proposed CNN's potential for regional-scale permafrost feature mapping. Notably, the optimal CNN architecture used unfiltered SAR data as input, underscoring the ...