The different origins of magnetic fields and activity in the Hertzsprung gap stars, OU Andromedae and 31 Comae

International audience Context. When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We compare the surface magnetic...

Full description

Bibliographic Details
Published in:Astronomy & Astrophysics
Main Authors: Borisova, A., Aurière, M., Petit, P., Konstantinova-Antova, R., Charbonnel, C., Drake, N. A.
Other Authors: Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://insu.hal.science/insu-03670229
https://insu.hal.science/insu-03670229/document
https://insu.hal.science/insu-03670229/file/aa26726-15.pdf
https://doi.org/10.1051/0004-6361/201526726
Description
Summary:International audience Context. When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We compare the surface magnetic fields and activity indicators of two active, fast rotating red giants with similar masses and spectral class but different rotation rates - OU And (P rot = 24.2 d) and 31 Com (P rot = 6.8 d) - to address the question of the origin of their magnetism and high activity. Methods: Observations were carried out with the Narval spectropolarimeter in 2008 and 2013. We used the least-squares deconvolution (LSD) technique to extract Stokes V and I profiles with high signal-to-noise ratio to detect Zeeman signatures of the magnetic field of the stars. We then provide Zeeman-Doppler imaging (ZDI), activity indicators monitoring, and a precise estimation of stellar parameters. We use state-of-the-art stellar evolutionary models, including rotation, to infer the evolutionary status of our giants, as well as their initial rotation velocity on the main sequence, and we interpret our observational results in the light of the theoretical Rossby numbers. Results: The detected magnetic field of OU Andromedae (OU And) is a strong one. Its longitudinal component B l reaches 40 G and presents an about sinusoidal variation with reversal of the polarity. The magnetic topology of OU And is dominated by large-scale elements and is mainly poloidal with an important dipole component, as well as a significant toroidal component. The detected magnetic field of 31 Comae (31 Com) is weaker, with a magnetic map showing a more complex field geometry, and poloidal and toroidal components of equal contributions. The evolutionary models show that the progenitors of OU And and 31 Com must have been rotating at velocities that correspond to 30 and 53%, respectively, of their critical rotation velocity on the zero age main sequence. Both OU And and 31 ...