Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change

International audience A new physically based distributed surface mass-balance model is presented for Alpine glaciers. Based on the Crocus prognostic snow model, it resolves both the temporal (1 hour time-step) and spatial (200 m grid-step) variability of the energy and mass balance of glaciers. Mas...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Gerbaux, Martin, Dedieu, Jean-Pierre, Etchevers, Pierre, Vincent, Christian, Genthon, P.
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2005
Subjects:
Online Access:https://insu.hal.science/insu-00374355
https://insu.hal.science/insu-00374355/document
https://insu.hal.science/insu-00374355/file/surface-mass-balance-of-glaciers-in-the-french-alps-distributed-modeling-and-sensitivity-to-climate-change.pdf
https://doi.org/10.3189/172756505781829133
Description
Summary:International audience A new physically based distributed surface mass-balance model is presented for Alpine glaciers. Based on the Crocus prognostic snow model, it resolves both the temporal (1 hour time-step) and spatial (200 m grid-step) variability of the energy and mass balance of glaciers. Mass-balance reconstructions for the period 1981-2004 are produced using meteorological reconstruction from the SAFRAN meteorological model for Glacier de Saint-Sorlin and Glacier d'Argentière, French Alps. Both glaciers lost mass at an accelerated rate in the last 23 years. The spatial distribution of precipitation within the model grid is adjusted using field mass-balance measurements. This is the only correction made to the SAFRAN meteorological input to the glacier model, which also includes surface atmospheric temperature, moisture, wind and all components of downward radiation. Independent data from satellite imagery and geodetic measurements are used for model validation. With this model, glacier sensitivity to climate change can be separately evaluated with respect to a full range of meteorological parameters, whereas simpler models, such as degree-day models, only account for temperature and precipitation. We provide results for both mass balance and equilibrium-line altitude (ELA) using a generic Alpine glacier. The sensitivity of the ELA to air temperature alone is found to be 125 m °C−1, or 160 m °C−1 if concurrent (Stefan-Boltzmann) longwave radiation change is taken into account.