Influence of high marine Ca/SO4 ratio on alteration of submarine basalts at 2.41 Ga documented by triple O and Sr isotopes of epidote

International audience Over the course of Earth’s history, marine sulfate concentrations have been increasing in response to long-term atmospheric oxygenation. In contrast to modern oceans, where abundant sulfate precipitates in hot oceanic crust as anhydrite, Precambrian oceans contained much less...

Full description

Bibliographic Details
Published in:Precambrian Research
Main Authors: Zakharov, D.O., Lundstrom, C.C., Laurent, Oscar, Reed, M.H., Bindeman, I.N.
Other Authors: Université de Lausanne = University of Lausanne (UNIL), University of Oregon Eugene, University of Illinois at Urbana-Champaign Urbana (UIUC), University of Illinois System, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-03436606
https://hal.science/hal-03436606/document
https://hal.science/hal-03436606/file/MS_Zakharov_SrSr_17O_R2.pdf
https://doi.org/10.1016/j.precamres.2021.106164
Description
Summary:International audience Over the course of Earth’s history, marine sulfate concentrations have been increasing in response to long-term atmospheric oxygenation. In contrast to modern oceans, where abundant sulfate precipitates in hot oceanic crust as anhydrite, Precambrian oceans contained much less (~0–10 mM) sulfate, so that submarine hydrothermal systems were comparatively poor in anhydrite. As a step towards exploring the role of chemical evolution of seawater solutes, we investigate the reaction between basalt and seawater that took place at the ca. 2.43–2.41 Ga Vetreny Belt (Karelia craton, NW Russia) using fluid inclusion and multi-isotope measurements complemented by reactive transport and static aqueous-mineral equilibrium calculations. Using fluid inclusion measurements by LA-ICP-MS, we constrain the Sr concentration in the least modified seawater-derived fluids and address the effect of phase separation. Then, we complement the previous δ18O – Δ′17O datasets with new 87Sr/86Sr measurements performed on 2.41 Ga epidote from the Vetreny Belt, and recent (0–6 Ma) oceanic epidote from Reykjanes, Iceland and the drilling site 504B in the eastern Pacific Ocean. The 2.41 Ga epidote with 87Sr/86Srinitial of 0.7029–0.7042 and Δ′17O of –0.06 to 0.00‰ is best explained by a relatively high fraction (~90%) of marine Sr that was delivered from contemporaneous seawater with 87Sr/86Sr ≈ 0.7045, and without significant removal by early anhydrite. Using Monte-Carlo simulation of a dual-porosity model, we constrain the range of possible exchange trajectories based on the variability of physical parameters (porosity, fluid flow velocity, fracture spacing, recrystallization rates). Further, we use a series of static equilibrium seawater-basalt reaction calculations with emphasis on the possible range of marine Ca/SO4 values at 2.41 Ga. Our calculations demonstrate that co-existing quartz and epidote in absence of feldspars represent equilibrium with less-evolved hydrothermal fluids. Consequently, equilibrium assemblage ...