Assessment of sediment and organic carbon exports into the Arctic ocean: the case of the Yenisei river basin

International audience The export of organic carbon export by the rivers to the oceans either as particulate organic carbon (POC) or dissolved organic carbon (DOC) is very sensitive to climate change especially in permafrost affected catchments where soils are very rich in organic carbon. With globa...

Full description

Bibliographic Details
Published in:Water Research
Main Authors: Fabre, Clément, Simeoni-Sauvage, Sabine, Tananaev, Nikita, Espitalier-Noël, Grégory, Teisserenc, Roman, Probst, Jean-Luc, Sanchez-Perez, Jose-Miguel
Other Authors: Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences (SB RAS), Ugra Research Institute of Information Technologies (RUSSIA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-02134703
https://hal.science/hal-02134703/document
https://hal.science/hal-02134703/file/Fabre_23789.pdf
https://doi.org/10.1016/j.watres.2019.04.018
Description
Summary:International audience The export of organic carbon export by the rivers to the oceans either as particulate organic carbon (POC) or dissolved organic carbon (DOC) is very sensitive to climate change especially in permafrost affected catchments where soils are very rich in organic carbon. With global warming, organic carbon export in both forms is expected to increase in Arctic regions. It should affect contemporary biogeochemical cycles in rivers and oceans and therefore modify the whole food web. This study tries to understand complex processes involved in sediment, POC and DOC riverine transport in the Yenisei River basin and to quantify their respective fluxes at the river outlet. The SWAT (Soil and Water Assessment Tool) hydrological model is used in this study to simulate water and suspended sediment transfers in the largest Arctic river. POC and DOC export have been quantified with empirical models, adapted from literature for the study case. First, the hydrological model has been calibrated and validated at a daily time step for the 2003–2008 and the 2009–2016 periods respectively, and its output has been compared with field data for water and sediment fluxes. Based on conceptualization of transfer processes, calibration on climate and soil properties has been performed in order to correctly represent hydrology and sediment transfer in permafrost basins. Second, calibration of empirical models for DOC/POC transport have been performed by comparing their output with field data, available from 2003 to 2016. Our study reveals that SWAT is capable of correctly representing hydrology, sediment transfer, POC and DOC fluxes and their spatial distribution at a daily timescale, and outlines the links between these fluxes and permafrost features. Our simulation effort results in specific sediment, POC and DOC fluxes of 2.97 t km−2 yr−1, 0.13 t km−2 yr−1 and 1.14 t km−2 yr−1 for the period 2003–2016 which are in the range of previous estimates. About 60% of the total fluxes of sediment, DOC and POC to the Arctic ...